
System Identification Toolbox™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

System Identification Toolbox™ Release Notes
© COPYRIGHT 2003–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2019a

Online Parameter Estimation: Use finite-history estimation for
recursive output error estimation . 1-2

R2018b

Online Parameter Estimation: Use recursive model blocks in
Simulink with batch data . 2-2

R2018a

Particle Filter Simulink Block: Estimate states of nonlinear
systems for online tracking and control system design 3-2

c2d Function: Convert models to discrete-time using least-
squares optimization . 3-2

ssest Function Enhancements: Identify state-space models
from frequency-domain data with new estimation algorithm
and additional weighting options . 3-3

Renaming of Estimation and Analysis Options 3-3

Functionality being removed or changed 3-5

iii

Contents

R2017b

Particle Filters: Estimate states of nonlinear systems for online
tracking and control system design . 4-2

New Example on Identification Techniques for Modal Analysis
. 4-2

Dynamic system models store Notes property as string or
character vector . 4-3

R2017a

Extended and Unscented Kalman Filter Simulink Blocks:
Estimate states of nonlinear systems for online tracking and
control system design . 5-2

fmincon Solver: Use constrained minimization methods for
model estimation . 5-2

State estimation using historical data . 5-3

Computation of standard deviation of simulated and forecasted
outputs and states . 5-4

Initial condition handling of nonlinear grey-box models 5-4

Specifying constant historical data for computing initial states
. 5-6

Estimating continuous-time models using band-limited time-
domain data . 5-7

Increased flexibility in defining model transformation
functions in translatecov command . 5-7

iv Contents

New example showing application of system identification tools
for diagnostics and prognostics . 5-8

Functionality being removed or changed 5-8

R2016b

Standalone Applications for System Identification: Deploy data
preparation and model estimation code using MATLAB
Compiler . 6-2

Extended and Unscented Kalman Filters: Estimate states of
nonlinear systems for online tracking and control system
design . 6-2

Frequency-Domain Identification Improvements: Identify
transfer function models faster and more accurately from
frequency-response data . 6-2

Reorganization of Focus Estimation Option: Increased
flexibility for configuring linear model estimation 6-3

compare Plot Updates: Plot model response error and
confidence regions . 6-4

Updates to predict and pe commands: Plot predicted response
and prediction error for multiple models 6-4

Updates to forecast command: Plot forecasted model response
. 6-5

Handling of delays during linear model estimation using time-
domain data . 6-5

Phase-Wrap Branch Option: Specify cutoff point for wrapping
phase in response plots . 6-6

Functionality Being Removed or Changed 6-7

v

R2016a

Improved Time-Series Forecasting: Forecast linear and
nonlinear model output . 7-2

Updates to resid command syntax and output plot 7-2

Compute state trajectory standard deviation using sim, and
specify initial state covariance . 7-3

findstates command returns covariance of estimated states
. 7-3

data2state command estimates current states of all types of
identified models . 7-3

New examples showing application of system identification
tools for diagnostics and prognostics 7-4

Functionality Being Removed or Changed 7-4

R2015b

Online Parameter Estimation Commands: Implement and
deploy recursive estimators with MATLAB Compiler or
MATLAB Coder . 8-2

Bayesian and Akaike Information Criteria (BIC and AIC)
Metrics: Compare identified models and select orders 8-2

procest command returns estimated input offsets 8-3

Unified sim command for simulating linear and nonlinear
identified models . 8-3

Option for setting orientation of input-output data plots 8-4

vi Contents

Updates to compare command plot interface 8-4

Modified normalized gradient algorithm for online estimation
. 8-4

Change in output and initial estimate specification of
Recursive Polynomial Model Estimator block 8-5

Change in input specification of Model Type Converter block
. 8-6

Functionality Being Removed or Changed 8-6

R2015a

nlgreyest command for nonlinear grey-box model estimation
. 9-2

Estimation options for nonlinear ARX, Hammerstein-Wiener,
and nonlinear grey-box model estimators 9-2

Reorganization of nonlinear model estimation reports 9-3

findopOptions command to create option set for operating
point computation of nonlinear ARX or Hammerstein-Wiener
models . 9-4

Unified findstates command for nonlinear models 9-4

Functionality being removed or changed 9-5

vii

R2014b

AR, ARMA, Output-Error, and Box-Jenkins online model
estimation with Recursive Polynomial Model Estimator block
. 10-2

Kalman Filter block for estimating states of linear time-
invariant and linear time-varying systems 10-2

Initial guesses for A(q) and C(q) polynomials in Recursive
Polynomial Model Estimator block 10-2

ident command renamed to systemIdentification 10-3

Functionality being removed or changed 10-3

R2014a

Recursive Least Squares Estimator and Recursive Polynomial
Model Estimator blocks for online model parameter
estimation . 11-2

Interactive identification of single-input/single-output plants
from measured data in PID Tuner app 11-2

Interactive identification of single-input/single-output plants
from simulation data when tuning PID Controller blocks
using Simulink Control Design . 11-3

ssregest, a regularization-based state-space model estimator,
for improved accuracy on short, noisy data sets 11-3

plot command for iddata object enhanced 11-4

Options set and specification of input delay and noise source
integrator for arxRegul command . 11-5

viii Contents

R2013b

Regularized estimation of linear and nonlinear models for
obtaining parameter values with less variance 12-2

ssarx subspace identification method for robust estimation of
state-space models using closed-loop data 12-3

Redesigned state-space model and initial model refinement
dialog boxes . 12-4

getpar and setpar commands to obtain and set parameter
attributes of identified linear models 12-5

Unstable models option added to System Identification Tool
. 12-5

SamplingGrid property for tracking dependence of array of
sampled models on variable values 12-6

R2013a

Bug Fixes

R2012b

Regularized estimates of impulse response, specification of
transport delays and estimation options using impulseest
. 14-2

translatecov command for translating model covariance across
transformations . 14-2

ix

ssform command for quick configuration of state-space model
structure . 14-3

Feedthrough specification for discrete-time transfer function
model estimation . 14-3

R2012a

Summary . 15-2

New Features in This Version . 15-2
Continuous-Time Transfer Function Identification for Time- and

Frequency-Domain Data . 15-3
Time-Series Modeling and Forecasting, Including Generating

ARIMA Models . 15-3
Estimation of Multi-Output Polynomial and Process Models

. 15-4
Interactive Response Plots with Better Look and Feel 15-4
Models Created with System Identification Toolbox Can Be Used

Directly with Control System Toolbox Functions 15-5
Improved Reliability of Numerical Computations 15-5
Estimating Functions and Estimation Option Sets 15-6
Model Analysis and Validation Option Sets 15-7
Identified Linear Models . 15-8
System Identification Tool GUI . 15-17

Changes Introduced in This Version 15-18
Reorganization of Estimation Reports 15-19
Polynomial Models . 15-20
State-Space Models . 15-25
Process Models . 15-31
Linear Grey-Box Models . 15-36
Identified Frequency-Response Data Models 15-39
Identification Data Objects . 15-40
Analysis Commands . 15-41
Other Functionality Being Removed or Changed 15-52

x Contents

R2011b

Bug Fixes

R2011a

Bug Fixes

R2010b

No New Features or Changes

R2010a

New Ability to Use Discrete-Time Linear Models for Nonlinear
Black-Box Estimation . 19-2

New Cell Array Support for B and F Polynomials of Multi-Input
Polynomial Models . 19-2

Functions and Function Elements Being Removed 19-3

R2009b

No New Features or Changes

xi

R2009a

Enhanced Handling of Offsets and Trends in Signals 21-2

Ability to Get Regressor Values in Nonlinear ARX Models . . 21-3

R2008b

Functions and Properties Being Removed 22-2

R2008a

Simulating Nonlinear Black-Box Models in Simulink Software
. 23-2

Linearizing Nonlinear Black-Box Models at User-Specified
Operating Points . 23-2

Estimating Multiple-Output Models Using Weighted Sum of
Least Squares Minimization Criterion 23-3

Improved Handling of Initial States for Linear and Nonlinear
Models . 23-4

Improved Algorithm Options for Linear Models 23-5

New Block Reference Pages . 23-6

Functions and Properties Being Removed 23-6

xii Contents

R2007b

New Polynomial Nonlinearity Estimator for Hammerstein-
Wiener Models . 24-2

R2007a

New Nonlinear Black-Box Modeling Options 25-2

New Nonlinear Grey-Box Modeling Option 25-2

Optimization Toolbox Search Method for Nonlinear Estimation
Is Supported . 25-3

New Getting Started Guide . 25-3

Revised and Expanded User's Guide . 25-3

R2006b

MATLAB Compiler Support . 26-2

R2006a

balred Introduced for Model Reduction 27-2

Search Direction for Minimizing Criteria Can Be Computed by
Adaptive Gauss-Newton Method . 27-2

xiii

Maximum Number of Bisections Used by Line Search Is
Increased . 27-2

Functions and Properties Being Removed 27-3

R14SP3

No New Features or Changes

R14SP2

No New Features or Changes

xiv Contents

R2019a

Version: 9.10

New Features

Bug Fixes

1

Online Parameter Estimation: Use finite-history estimation for
recursive output error estimation
You can now perform recursive output error (OE) estimation using the finite-history
algorithm option. Finite-history estimation is also known as sliding-window estimation,
and it was introduced in R2018b for recursive AR and recursive ARX model structures.
Recursive OE estimation using finite history is available in the recursiveOE function
and the Recursive Polynomial Estimator block. For more information, see “Recursive
Algorithms for Online Parameter Estimation”.

R2019a

1-2

R2018b

Version: 9.9

New Features

Bug Fixes

2

Online Parameter Estimation: Use recursive model blocks in
Simulink with batch data
You can now use batch data with the Simulink® Recursive Least Squares Estimator and
Recursive Polynomial Model Estimator blocks. You can also use batch data with all the
command-line recursive-estimator commands such as recursiveLS and recursiveARX.
This update allows you to input data frames containing multiple samples directly to the
estimators. Previously, these estimator blocks and models accepted only individual
samples. So if your hardware provided data in frames, you needed to unpack the data
samples yourself before passing the signal to the estimators.

You can also now perform finite-history estimation, otherwise known as sliding-window
estimation. Previously, the available estimation methods all used infinite-history
estimation, using data knowledge going back to the start of the simulation. Finite-history
estimation is especially useful when you have rapidly changing parameters. Finite-history
estimation is available for the Recursive Least Squares Estimator and Recursive
Polynomial Model Estimator blocks, and for the recursiveLS, recursiveAR, and
recursiveARX commands. For more information, see Recursive Algorithms for Online
Parameter Estimation.

R2018b

2-2

https://www.mathworks.com/help/releases/R2018b/ident/ref/recursiveleastsquaresestimator.html
https://www.mathworks.com/help/releases/R2018b/ident/ref/recursivepolynomialmodelestimator.html
https://www.mathworks.com/help/releases/R2018b/ident/ref/recursivels.html
https://www.mathworks.com/help/releases/R2018b/ident/ref/recursivearx.html
https://www.mathworks.com/help/releases/R2018b/ident/ref/recursiveleastsquaresestimator.html
https://www.mathworks.com/help/releases/R2018b/ident/ref/recursivepolynomialmodelestimator.html
https://www.mathworks.com/help/releases/R2018b/ident/ref/recursivepolynomialmodelestimator.html
https://www.mathworks.com/help/releases/R2018b/ident/ref/recursivels.html
https://www.mathworks.com/help/releases/R2018b/ident/ref/recursivear.html
https://www.mathworks.com/help/releases/R2018b/ident/ref/recursivearx.html
https://www.mathworks.com/help/releases/R2018b/ident/ug/algorithms-for-online-estimation.html
https://www.mathworks.com/help/releases/R2018b/ident/ug/algorithms-for-online-estimation.html

R2018a

Version: 9.8

New Features

Compatibility Considerations

3

Particle Filter Simulink Block: Estimate states of nonlinear
systems for online tracking and control system design
Perform state estimation for arbitrary nonlinear models using the new Particle Filter
block in Simulink. Particle filters are flexible in comparison to Kalman filters, that is, they
can also perform state estimation for nonlinear systems with non-Gaussian distributions.

Particle Filter block uses particles and sensor data to estimate the posterior distribution
of the current state. The filter predicts the states using the nonlinear state transition
function. Then, it corrects the estimate based on sensor data and measurement likelihood
model. You can specify a fixed number of particles to use, a fixed number of state
variables to estimate, and your state estimation method.

You can find the Particle Filter block in the System Identification Toolbox >
Estimators block library in Simulink.

You can use Simulink Coder™ to deploy particle filters with multiple measurement models
and fixed-size arrays for your application.

For more information on the Particle Filter block, see Particle Filter. For more information
on the detailed workflow, see Parameter and State Estimation in Simulink Using Particle
Filter Block.

c2d Function: Convert models to discrete-time using least-
squares optimization
You can now convert continuous-time dynamic system models to discrete time using a
new least-squares optimization method. This algorithm minimizes the error between the
frequency responses of the continuous-time and discrete-time systems up to the Nyquist
frequency. This method is particularly useful when you want to capture fast system
dynamics but must use a larger sample time, for example, when computational resources
are limited.

To convert a model using this approach, specify the discretization method as 'least-
squares'.

discreteModel = c2d(contModel,Ts,'least-squares');

Alternatively, you can create a c2dOptions option set, and set the Method property to
'least-squares'. You can then use this option set with the c2d function.

R2018a

3-2

https://www.mathworks.com/help/releases/R2018a/ident/ref/pf_block.html
https://www.mathworks.com/help/releases/R2018a/ident/examples/_mw_8159645d-0145-4cc6-98b7-cd03eb5ed16f.html
https://www.mathworks.com/help/releases/R2018a/ident/examples/_mw_8159645d-0145-4cc6-98b7-cd03eb5ed16f.html

options = c2dOptions('Method','least-squares');
discreteModel = c2d(contModel,Ts,options);

This conversion method supports only SISO models.

For more information, see c2d and c2dOptions.

ssest Function Enhancements: Identify state-space models
from frequency-domain data with new estimation algorithm
and additional weighting options
ssest has a new default algorithm for performing state-space model estimation from
frequency-domain data. You are likely to see an accuracy improvement, particularly for
data with dynamics over a large range of frequencies and amplitudes. This algorithm was
first deployed for tfest.

For state-space estimation using frequency-response data in an idfrd object, you can
now specify the estimation weighting filter as 'inv' or 'invsqrt'. Use the
WeightingFilter option of ssestOptions. These new options enable you to specify
common weighting schemes that are useful for capturing relatively low amplitude
dynamics in data. For more information, see ssestOptions.

The new algorithm is not available for MIMO systems. In these cases, n4sid remains the
default algorithm.

Compatibility Considerations
When estimating state-space models from frequency-domain data, the estimation results
may not match results from previous releases. To perform estimation using the previous
algorithm (n4sid), set the InitializeMethod option of ssestOptions to 'n4sid'.

Renaming of Estimation and Analysis Options
Estimation and Analysis options were renamed.

Compatibility Considerations
Scripts with the old names still run normally. Consider using the new names for
continuing compatibility with newly developed features and algorithms.

3-3

https://www.mathworks.com/help/releases/R2018a/ident/ref/c2d.html
https://www.mathworks.com/help/releases/R2018a/ident/ref/c2doptions.html
https://www.mathworks.com/help/releases/R2018a/ident/ref/ssest.html
https://www.mathworks.com/help/releases/R2018a/ident/ref/tfest.html
https://www.mathworks.com/help/releases/R2018a/ident/ug/representing-data-in-matlab-workspace.html#bs31ta0-1
https://www.mathworks.com/help/releases/R2018a/ident/ref/ssestoptions.html

Option-Name Updates

Old Name New Name Option Sets
SearchOption SearchOptions armaxOptions,

bjOptions,
findopOptions,
findstatesOptions,
greyestOptions,
nlarxOptions,
nlgreyestOptions,
nlhwOptions, oeOptions,
polyestOptions,
procestOptions,
ssestOptions,
tfestOptions

GnPinvConst GnPinvConstant
InitGnaTol InitialGnaTolerance
MaxFunEvals MaxFunctionEvaluation

s
MinParChange MinParameterChange
RelImprovement RelativeImprovement
MaxIter MaxIterations
TolX StepTolerance
TolFun FunctionTolerance
Old Name New Name Option Sets

EstCovar EstimateCovariance

armaxOptions,
arxOptions, bjOptions,
greyestOptions,
iv4Options,
n4sidOptions,
nlgreyestOptions,
oeOptions,
polyestOptions,
procestOptions,
ssestOptions,
ssregestOptions,
tfestOptions

Old Name New Name Option Sets
InitMethod InitializeMethod

tfestOptions
InitOption InitializeOptions
Old Name New Name Option Sets
DiffScheme DifferenceScheme

nlgreyestOptionsDiffMinChange MinDifference
DiffMaxChange MaxDifference

R2018a

3-4

Old Name New Name Option Sets
GradientType Type
Old Name New Name Option Sets
IterWavenet IterativeWavenet nlarxOptions
RegulKernel RegularizationKernel ssregestOptions,

impulseestOptions,
arxRegulOptions

Functionality being removed or changed
Functionality Result Use This Instead Compatibility

Considerations
Estimation of state-space
models from frequency-
domain data, using the
ssest command.

Still
runs

Not applicable ssest has a new default
algorithm, so the estimation
results may not match results
from previous releases. See
“ssest Function Enhancements:
Identify state-space models
from frequency-domain data
with new estimation algorithm
and additional weighting
options” on page 3-3

3-5

https://www.mathworks.com/help/releases/R2018a/ident/ref/ssest.html
https://www.mathworks.com/help/releases/R2018a/ident/ref/ssest.html

Functionality Result Use This Instead Compatibility
Considerations

The following estimation
options have new names:

• SearchOption
• GnPinvConst
• InitGnaTol
• MaxFunEvals
• MinParChange
• RelImprovement
• MaxIter
• Tolx
• TolFun

Still
runs • SearchOptions

• GnPinvConstant
• InitialGnaToler

ance
• MaxFunctionEval

uations
• MinParameterCha

nge
• RelativeImprove

ment
• MaxIterations
• StepTolerance
• FunctionToleran

ce

Consider updating scripts and
functions to use the new
names. See “Renaming of
Estimation and Analysis
Options” on page 3-3.

The following estimation
options have new names:

• EstCovar

Still
runs • EstimateCovaria

nce

Consider updating scripts and
functions to use the new
names. See “Renaming of
Estimation and Analysis
Options” on page 3-3.

The following estimation
options have new names:

• InitMethod
• InitOption

Still
runs • InitializeMetho

d
• InitializeOptio

ns

Consider updating scripts and
functions to use the new
names. See “Renaming of
Estimation and Analysis
Options” on page 3-3.

The following estimation
options have new names:

• DiffScheme
• DiffMinChange
• DiffMaxChange
• GradientType

Still
runs • DifferenceSchem

e
• MinDifference
• MaxDifference
• Type

Consider updating scripts and
functions to use the new
names. See “Renaming of
Estimation and Analysis
Options” on page 3-3.

R2018a

3-6

Functionality Result Use This Instead Compatibility
Considerations

The following estimation
options have new names:

• IterWavenet
• RegulKernel

• IterativeWavene

t
• RegularizationK

ernel

Consider updating scripts and
functions to use the new
names. See “Renaming of
Estimation and Analysis
Options” on page 3-3.

3-7

R2017b

Version: 9.7

New Features

Bug Fixes

4

Particle Filters: Estimate states of nonlinear systems for
online tracking and control system design
Perform state estimation for arbitrary nonlinear system models using the new
particleFilter command. Particle filters are flexible, that is, they can also perform
state estimation for nonlinear systems with non-Gaussian distributions. Previously, you
could perform state estimation only for systems with unimodal distributions using
extended or unscented Kalman filters.

particleFilter uses particles and sensor data to estimate the posterior distribution of
the current state. The filter predicts the states using the nonlinear state transition
function. Then, it corrects the estimate based on sensor data and measurement likelihood
model. You can specify a fixed number of particles to use, a fixed number of state
variables to estimate, and your state estimation method based on the particle weights.

To use a particle filter for state estimation:

1 Create a particle filter, and set the transition and measurement likelihood functions.
2 Initialize the particle filter by specifying the number of particles to be used and your

initial state guess. Also specify state bounds or covariance of the initial particle
distribution.

3 Specify the state estimation and resampling method.
4 Perform state estimation.

You can use MATLAB® Compiler™ or MATLAB Coder software to deploy the particle filter
for your application.

For more information and examples, see the particleFilter reference page.

New Example on Identification Techniques for Modal Analysis
The new example Modal Analysis of a Flexible Flying Wing Aircraft shows the use of
system identification techniques for modal analysis. The example shows computation of
bending modes of a flexible wing aircraft. The vibration response of the wing is collected
at multiple points along its span. The data is used to identify a dynamic model of the
system. The modal parameters are extracted from the identified model. The modal
parameter data is combined with the sensor position information to visualize the various
bending modes of the wing.

R2017b

4-2

https://www.mathworks.com/help/releases/R2017b/ident/ref/particlefilter.html
https://www.mathworks.com/help/releases/R2017b/ident/examples/modal-analysis-of-a-flexible-flying-wing-aircraft.html

Dynamic system models store Notes property as string or
character vector
The Notes property of a dynamic system model stores any text that you want to associate
with the model. This property now accepts either character-vector or string values, and
stores whichever type you provide. For instance, if sys1 and sys2 are dynamic system
models, you can set their Notes properties as follows:

sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes

ans =

 "sys1 has a string."

ans =

 1×1 cell array

 {'sys2 has a character vector.'}

When you create a new model, the default value of Notes is now [0×1 string].
Previously, you could only specify the Notes property as a character vector or cell array
of character vectors, and the default value was {}.

Some other dynamic system model properties accept strings as inputs, but store the
values as character vectors or a cell array of character vectors.

4-3

https://www.mathworks.com/help/releases/R2017b/matlab/ref/string.html

R2017a

Version: 9.6

New Features

Bug Fixes

Compatibility Considerations

5

Extended and Unscented Kalman Filter Simulink Blocks:
Estimate states of nonlinear systems for online tracking and
control system design
You can now use the Extended Kalman Filter and Unscented Kalman Filter blocks to
estimate the states of a discrete-time nonlinear system in Simulink. The blocks use first-
order extended and unscented Kalman filter algorithms to estimate states as new data
becomes available during the operation of the system. Previously, nonlinear state
estimation using these algorithms was available at the command line only. You can use the
state estimates for applications such as condition monitoring and fault detection. You can
also generate C/C++ code for these blocks using Simulink Coder software.

For information about how to use these blocks, see the Extended Kalman Filter and
Unscented Kalman Filter block reference pages. For examples, see Estimate States of
Nonlinear System with Multiple, Multirate Sensors and Nonlinear State Estimation of a
Degrading Battery System.

fmincon Solver: Use constrained minimization methods for
model estimation
You can now use the sequential quadratic programming (SQP) and trust-region-reflective
algorithms of the fmincon solver for linear and nonlinear model estimation. If you have
Optimization Toolbox™ software, you can also use the interior-point and active-set
algorithms of the fmincon solver. In the System Identification app, you can use only
the SQP and interior-point algorithms.

These algorithms might result in improved estimation results in the following scenarios:

• Constrained minimization problems when there are bounds imposed on the model
parameters.

• Model structures where the loss function is a nonlinear or non-smooth function of the
parameters.

• Multi-output model estimation
• Estimating regularization parameters when using ssregest, arxRegul, or

impulseest — You no longer need Optimization Toolbox software for using the
default search method ('fmincon').

The estimation option sets for which the new search method is available are: oeOptions,
bjOptions, armaxOptions, polyestOptions, procestOptions, greyestOptions,

R2017a

5-2

https://www.mathworks.com/help/releases/R2017a/ident/ref/ekf_block.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/ukf_block.html
https://www.mathworks.com/help/releases/R2017a/ident/ug/multirate-nonlinear-state-estimation-in-simulink.html
https://www.mathworks.com/help/releases/R2017a/ident/ug/multirate-nonlinear-state-estimation-in-simulink.html
https://www.mathworks.com/help/releases/R2017a/ident/examples/nonlinear-state-estimation-of-a-degrading-battery-system.html
https://www.mathworks.com/help/releases/R2017a/ident/examples/nonlinear-state-estimation-of-a-degrading-battery-system.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/oeoptions.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/bjoptions.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/armaxoptions.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/polyestoptions.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/procestoptions.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/greyestoptions.html

tfestOptions, ssestOptions, nlhwOptions, nlarxOptions, nlgreyestOptions,
findopOptions, and findstatesOptions.

Compatibility Considerations
If you do not have Optimization Toolbox software, the output of ssregest, arxRegul, or
impulseest may not match previous releases. The output is now more accurate because
the software uses the trust-region-reflective fmincon algorithm instead of Quasi-Newton
line search for estimating regularization parameters.

State estimation using historical data
The computation of states of a model using past historical data has changed for the
following commands:

• data2state — The command now computes the states by performing 1-step
prediction error minimization. Previously, the command performed simulation error
minimization.

• sim, simsd, predict, pe, compare, and resid — These commands compute initial
states from past data by performing 1-step prediction error minimization. Previously,
these commands performed simulation error minimization for simulated output, and K-
step prediction error minimization for prediction horizon K.

Compatibility Considerations
For models with a nontrivial noise component, the results of the following commands do
not match previous releases:

• The estimated states x and state covariance xCov using data2state.

[x,xCov] = data2state(___)

• The output of sim, simsd, predict, pe, compare, and resid if you specify initial
conditions using historical data — When you specify the InitialCondition option of
simOptions, simsdOptions, predictOptions, peOptions, compareOptions,
and residOptions as a structure with input-output data, there is a change in the
output of these commands.

5-3

https://www.mathworks.com/help/releases/R2017a/ident/ref/tfestoptions.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/ssestoptions.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/nlhwoptions.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/nlarxoptions.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/nlgreyestoptions.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/findopoptions.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/findstatesoptions.html

Computation of standard deviation of simulated and
forecasted outputs and states
The sim and forecast commands now account for additive disturbances in your
identified model when computing standard deviations of simulated or forecasted outputs
or state estimates. Previously, these commands only accounted for model parameter
covariance and initial state covariance during uncertainty calculations.

Compatibility Considerations
The following computed standard deviations do not match the results from previous
releases:

• Standard deviations of forecasted output yf_sd and estimated states x_sd using the
following syntax of forecast.

[yf,x0,sysf,yf_sd,x,x_sd] = forecast(___)
• Standard deviations of simulated output y_sd and estimated states x_sd using the

following syntaxes of sim.

[y,y_sd] = sim(___)

[y,y_sd,x] = sim(___)

[y,y_sd,x,x_sd] = sim(___)
• Confidence intervals plotted for the simulated model output in the System
Identification app. For information about how the plot is generated, see Simulation
and Prediction in the App.

Initial condition handling of nonlinear grey-box models
There is a change in the default handling of initial conditions of nonlinear grey-box
models by the sim, predict, pe, compare, resid, forecast, and findstates
commands. The changes ensure that the software honors the initial state specification in
the InitialStates property of the idnlgrey model. You specify the initial condition
handling in the following option sets:

• predictOptions, peOptions, compareOptions, residOptions,
forecastOptions — When InitialCondition is set to the default value 'e', only
those initial states that are designated as free in the InitialStates property of the

R2017a

5-4

https://www.mathworks.com/help/releases/R2017a/ident/ref/forecast.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/sim.html
https://www.mathworks.com/help/releases/R2017a/ident/ug/simulation-and-prediction-in-the-app.html
https://www.mathworks.com/help/releases/R2017a/ident/ug/simulation-and-prediction-in-the-app.html

idnlgrey model are now estimated. Previously, all the states of the model were
estimated.

• findstatesOptions — When InitialState is set to the default value 'e', only
those initial states that are designated as free in the InitialStates property of the
idnlgrey model are now estimated. Previously, all the states of the model were
estimated.

• simOptions — The default InitialCondition value is now []. For the default
value, the software specifies the initial states of a nonlinear grey-box model sys as
getinit(sys,'Value'). There is no compatibility issue with this change.

Compatibility Considerations
For predictOptions, peOptions, compareOptions, residOptions,
forecastOptions, and findstatesOptions option sets, if you specify the
InitialCondition or InitialState option as:

• 'e' — The software now estimates only those states that are specified as free in the
idnlgrey model. Previously, all the states of the model were estimated. To estimate
all the states, specify all states of the model sys as free by setting the Fixed field of
sys.InitialStates as false. Alternatively, use setinit. For more information,
see the reference page of the relevant option set.

• 'fixed' — This option might be removed in a future release. Use alternate code as
described here.

When InitialCondition is 'fixed', sys.InitialStates sets the values of the
initial states, but all the states are considered fixed for state estimation. To reproduce
this behavior, first specify all the states as fixed by setting the Fixed field of
sys.InitialStates as true. Then specify the InitialCondition option of your
option set as 'e'. For more information, see the reference page of the relevant option
set.

• 'model' — This option might be removed in a future release. Use alternate code as
described here.

When InitialCondition is 'model', sys.InitialStates sets the values of the
initial states, which states to estimate, and their minimum and maximum values. To
reproduce this behavior, specify the InitialCondition option of your option set as
'e'. For more information, see the reference page of the relevant option set.

5-5

https://www.mathworks.com/help/releases/R2017a/ident/ref/predictoptions.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/peoptions.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/compareoptions.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/residoptions.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/forecastoptions.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/findstatesoptions.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/setinit.html

'fixed' and 'model' are not available for the forecastOptions and
findstatesOptions option sets.

Specifying constant historical data for computing initial
states
There is a change in the specification of constant input or output historical data for the
computation of initial conditions by the following commands:

• simOptions, simsdOptions, predictOptions, peOptions, compareOptions,
and residOptions — Previously, to specify constant past data, you specified the
InitialCondition option of these options sets as a structure with Input and
Output fields that are row vectors. For example, suppose that for a two-output time
series model with no inputs, the past outputs have constant values 5 and 10. To
compute the initial conditions when predicting the model response, you could
previously specify the constant output values as the row vector [5 10].

IO.Input = [];
IO.Output = [5 10];
opt = predictOptions('InitialCondition',IO);

The software no longer interprets a row vector as constant values for the Input and
Output fields.

• data2state — Previously, to specify constant past data, you specified the PastData
input argument as a structure with Input and Output fields that are row vectors. The
software no longer interprets a row vector as constant values for the Input and
Output fields.

Compatibility Considerations
If you specify past input or output data as row vectors, you see a change in output of the
sim, simsd, predict, pe, compare, resid, and data2state commands. To recover the
results from previous releases, update your scripts as follows:

• For constant past output data, specify Output as an m-by-Ny matrix of the constant
values, where m is the order of the model and Ny is the number of outputs. For
example, for a third-order two-output time series model, where the past outputs have
constant values 5 and 10, specify Output as a 3-by-2 matrix of the constant values.

IO.Output = [5 10;5 10;5 10];

R2017a

5-6

• For constant past input data, specify the Input field as an m-by-Nu matrix of constant
values, where Nu is the number of inputs.

Estimating continuous-time models using band-limited time-
domain data
If you specify time-domain estimation data as band-limited, the software no longer
converts the data to frequency-domain before performing continuous-time model
estimation. Previously, if you specified the InterSample property of your iddata object
as 'bl', the time-domain data was converted to frequency-domain data, and the sample
time of the data was set to zero.

Compatibility Considerations
If you are using band-limited time-domain data for estimating continuous-time models,
the estimation results might not match previous releases.

To recover the results from previous releases, convert the time-domain iddata object to
frequency-domain using fft, and set the sample time to zero. Use the frequency-domain
data for model estimation.

dataFD = fft(data);
dataFD.Ts = 0;

Increased flexibility in defining model transformation
functions in translatecov command
When you use the translatecov command to translate parameter covariance across
model transformation operations, you specify the transformation operations using a
transformation function, fcn. Now, fcn can take inputs of any data type, provided one of
the inputs is a linear identified model with parameter covariance information. Previously,
all the inputs to fcn had to be linear identified models. For an example, see Translate
Parameter Covariance to Closed-Loop Model.

5-7

https://www.mathworks.com/help/releases/R2017a/matlab/ref/fft.html
https://www.mathworks.com/help/releases/R2017a/ident/ref/translatecov.html#bvn86fb
https://www.mathworks.com/help/releases/R2017a/ident/ref/translatecov.html#bvn86fb

New example showing application of system identification
tools for diagnostics and prognostics
The Condition Monitoring and Prognostics Using Vibration Signals example shows how to
extract features from vibration signals measured from a ball bearing, and use the features
for health monitoring and prognostics.

Functionality being removed or changed
Functionality Result Use This Instead Compatibility

Considerations
ssregest, arxRegul,
and impulseest

Still
runs

Not applicable If you do not have Optimization
Toolbox software, the output of
ssregest, arxRegul, and
impulseest may not match
previous releases. For more
information, see “fmincon
Solver: Use constrained
minimization methods for
model estimation” on page 5-2.

[x,xCov] =
data2state(___)

Still
runs

Not applicable Estimated states x and state
covariance xCov do not match
the values from previous
releases for models with
nontrivial noise components.
For more information, see
“State estimation using
historical data” on page 5-3.

R2017a

5-8

https://www.mathworks.com/help/releases/R2017a/ident/examples/condition-monitoring-and-prognostics-using-vibration-signals.html

Functionality Result Use This Instead Compatibility
Considerations

Specifying initial
conditions using
historical data in the
simOptions,
simsdOptions,
predictOptions,
peOptions,
compareOptions, and
residOptions
commands.

Still
runs

Not applicable The results do not match the
values from previous releases
for models with nontrivial
noise component. For more
information, see “State
estimation using historical
data” on page 5-3.

[yf,x0,sysf,yf_sd,x
,x_sd] =
forecast(___)

Still
runs

Not applicable Standard deviations of
forecasted output yf_sd and
estimated states x_sd do not
match previous releases. For
more information, see
“Computation of standard
deviation of simulated and
forecasted outputs and states”
on page 5-4.

[y,y_sd] = sim(___)
[y,y_sd,x] =
sim(___)
[y,y_sd,x,x_sd] =
sim(___)

Still
runs

Not applicable Standard deviations of
simulated output y_sd and
estimated states x_sd do not
match previous releases. For
more information, see
“Computation of standard
deviation of simulated and
forecasted outputs and states”
on page 5-4.

Confidence intervals
plotted for the simulated
model output in the
System Identification
app.

Still
runs

Not applicable The computed confidence
interval does not match
previous releases. For more
information, see “Computation
of standard deviation of
simulated and forecasted
outputs and states” on page 5-
4.

5-9

Functionality Result Use This Instead Compatibility
Considerations

For idnlgrey models,
specifying
InitialCondition or
InitialState option
of the following option
sets as 'e', 'fixed', or
'model':
predictOptions,
peOptions,
compareOptions,
residOptions,
forecastOptions, and
findstatesOptions.

Still
runs

Specify
InitialCondition
and InitialState as
the default option 'e'.

The behavior of the default
value 'e' of the
InitialCondition and
InitialState options has
changed. To recover the old
default behavior, update your
code as described in “Initial
condition handling of nonlinear
grey-box models” on page 5-4.

Specifying constant
input or output historical
data as row vectors in
data2state,
simOptions,
simsdOptionspredict
Options, peOptions,
compareOptions, and
residOptions.

Still
runs

Do not use row vectors The software no longer
interprets a row vector as
constant values. To recover the
results from previous releases,
update your scripts as
described in “Specifying
constant historical data for
computing initial states” on
page 5-6.

Using band-limited time-
domain data for
estimating continuous-
time models.

Still
runs

Not applicable The estimation results might
not match previous releases.
To recover the results from
previous releases, update your
scripts as described in
“Estimating continuous-time
models using band-limited
time-domain data” on page 5-7.

V =
arxstruc(ze,zv,NN,M
axSize);

Still
runs

V =
arxstruc(ze,zv,NN
);

The MaxSize input is now
ignored during computation of
the loss function for an ARX
model using arxstruc.

R2017a

5-10

Functionality Result Use This Instead Compatibility
Considerations

Using NoiseData option
of simsdOptions to add
specified noise to
simulated data.

Still
runs

Not applicable The NoiseData option may be
removed in a future release.

OutputWeight option
of forecastOptions

Still
runs

Not applicable The OutputWeight option
may be removed in a future
release.

5-11

R2016b

Version: 9.5

New Features

Bug Fixes

Compatibility Considerations

6

Standalone Applications for System Identification: Deploy
data preparation and model estimation code using MATLAB
Compiler
You can create standalone applications to deploy code that includes model estimation
commands such as arx, armax, tfest, ssest, greyest, nlarx, nlhw, and nlgreyest.
Previously, you could not compile offline estimation commands using MATLAB Compiler
software. Now you can compile all command-line functionality, except advice.

For a complete list of estimation commands, see Commands for Model Estimation.

Extended and Unscented Kalman Filters: Estimate states of
nonlinear systems for online tracking and control system
design
You can now estimate the states of discrete-time nonlinear systems at the command line
using first-order extended Kalman filter algorithms and unscented Kalman filter
algorithms. The new state estimation commands extendedKalmanFilter and
unscentedKalmanFilter are useful for online estimation of states when new data is
available during the operation of the system. You can use the state estimates for
applications such as condition monitoring and fault detection.

You can use MATLAB Compiler or MATLAB Coder software to deploy the estimators in
your application.

For examples of online state estimation, see Nonlinear State Estimation Using Unscented
Kalman Filter and Fault Detection Using an Extended Kalman Filter.

Frequency-Domain Identification Improvements: Identify
transfer function models faster and more accurately from
frequency-response data
A new algorithm is now used for performing transfer function estimation from frequency-
domain data using tfest. You are likely to see faster and more accurate results,
particularly for data with dynamics over a large range of frequencies and amplitudes.

In addition, for transfer function estimation using frequency-response data, you can now
specify the estimation weighting filter as 'inv' or 'invsqrt' using the

R2016b

6-2

https://www.mathworks.com/help/releases/R2016b/ident/ref/arx.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/armax.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/tfest.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/ssest.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/greyest.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/nlarx.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/nlhw.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/nlgreyest.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/advice.html
https://www.mathworks.com/help/releases/R2016b/ident/gs/commands-for-model-estimation.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/extendedkalmanfilter.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/unscentedkalmanfilter.html
https://www.mathworks.com/help/releases/R2016b/ident/ug/what-is-online-estimation.html
https://www.mathworks.com/help/releases/R2016b/ident/ug/nonlinear-state-estimation-using-unscented-kalman-filter.html
https://www.mathworks.com/help/releases/R2016b/ident/ug/nonlinear-state-estimation-using-unscented-kalman-filter.html
https://www.mathworks.com/help/releases/R2016b/ident/ug/fault-detection-using-an-extended-kalman-filter.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/tfest.html
https://www.mathworks.com/help/releases/R2016b/ident/ug/representing-data-in-matlab-workspace.html#bqt1r_e

WeightingFilter option of tfestOptions. These new options enable you to specify
common weighting schemes that are useful for capturing relatively low amplitude
dynamics in data, or for fitting data with high modal density. The options also make it
easier to specify channel-dependent weighting filters for MIMO frequency-response data.

Compatibility Considerations
When estimating transfer functions from frequency-domain data, the estimation results
may not match results from previous releases. To perform estimation using the previous
algorithm, append '-R2016a' to the syntax:

sys = tfest(___ ,'-R2016a')

Reorganization of Focus Estimation Option: Increased
flexibility for configuring linear model estimation
The Focus estimation option of linear model estimation commands has been split into
three options. Previously, you specified Focus as one of 'simulation', 'prediction',
'stability', or a custom filter. The restructuring of the options provides greater
flexibility in configuring model estimation. For example, you can now choose to minimize
the prediction error and specify a custom filter for prefiltering.

The new options are:

• Focus — Choose minimization of prediction or simulation error during estimation.
Focus is no longer available in the tfestOptions and oeOptions option sets.

• EnforceStability — Ensure that the estimated model is stable. This option is not
available in the procestOptions and ssregestOptions option sets.

• WeightingFilter — Specify a custom weighting prefilter for estimation.

The new options are available for the following option sets — arxOptions,
armaxOptions, bjOptions, oeOptions, iv4Options, polyestOptions,
procestOptions, tfestOptions, ssestOptions, ssregestOptions,
n4sidOptions, and greyestOptions.

6-3

https://www.mathworks.com/help/releases/R2016b/ident/ref/tfestoptions.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/tfestoptions.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/oeoptions.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/procestoptions.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/ssregestoptions.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/arxoptions.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/armaxoptions.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/bjoptions.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/oeoptions.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/iv4options.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/polyestoptions.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/procestoptions.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/tfestoptions.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/ssestoptions.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/ssregestoptions.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/n4sidoptions.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/greyestoptions.html

Compatibility Considerations
• If you specify Focus as 'stability', then EnforceStability is now set to 1, and

the Focus option is 'prediction'. Consider using the EnforceStability option
instead.

• If you specify Focus as a filter prefilter, then WeightingFilter property is now
set to prefilter and Focus is 'simulation'. Consider using the
WeightingFilter option instead.

• If you are performing frequency-domain estimation of transfer functions, the stability
constraint is no longer enforced by default. To enforce model stability, use the
EnforceStability option.

compare Plot Updates: Plot model response error and
confidence regions
The compare command has the following changes to the output plot:

• You can now plot the error between model response and validation data. Previously,
only the model response was plotted.

• You can view the confidence region for simulated model response.

To display the error plot and confidence region, right-click the plot, and use the context
menu.

Updates to predict and pe commands: Plot predicted
response and prediction error for multiple models
The predict and pe commands have the following changes to syntax and output plot:

• You can now plot the predicted model response and the prediction error for multiple
identified models at the same time. Previously, you could only plot the predicted
response and prediction error of a single model. You can also specify the line
specifications for the plots, including line style, line color, and marker type.

• You can now toggle between predicted model response plot and prediction error plot
using the context menu of the plot. To access the menu, right-click the plot. You can
also use the menu to configure the plots. For example, you can select the models to
view.

R2016b

6-4

https://www.mathworks.com/help/releases/R2016b/ident/ref/compare.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/predict.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/pe.html

Updates to forecast command: Plot forecasted model
response
You can now plot the forecasted output of a model using the forecast command. You
can specify the line specifications for the plot, including line style, line color, and marker
type. You can also plot the forecasted output of multiple models at the same time.

To configure the plot, you can use the context menu of the plot. For example, you can use
the menu to select the models to view, and to plot the confidence region of the forecasted
outputs. To access the menu, right-click the plot.

Handling of delays during linear model estimation using time-
domain data
The handling of delays during linear model estimation using time-domain data has
changed. If you specify a delay in the model, the regressors generated during model
estimation are now identical, regardless of how the delays are specified.

For example, the coefficients for the ARX polynomial models estimated by the following
two syntaxes are now the same.

m1 = arx(data,[1 1 5])

m2 = arx(data,[1 1 1],'InputDelay',4)

The net delay in both models is the same but is represented differently. The B polynomial
for m1 has four additional leading zeros, while the InputDelay property of m2 is four.

Some ways of specifying delay, depending upon the model structure and input-output size
are: InputDelay (for all models), IODelay (for polynomial models and transfer
functions), Td (for process models), and nk order (in the estimators for polynomial models
such as arx). Note that only nk values greater than 1 are treated as delays in polynomial
models, because nk=1 denotes lack of feedthrough.

In addition, if you specify the InputDelay property of the model, the input signal is now
prepended with n zero values to pre-compensate for the n input delays. Previously, the
output signal in estimation data was precompensated for those delays by discarding the
first n output samples. This change in the handling of input delays improves
the estimation of initial conditions, resulting in better fits to the data.

6-5

https://www.mathworks.com/help/releases/R2016b/ident/ref/forecast.html

Compatibility Considerations
If you are estimating linear models with known delay n using time-domain data, the
estimation results might be different from previous releases. You can recover the results
from previous releases for:

• Single-output data with model delay specified using InputDelay, IODelay, or nk
order properties

• Multi-output data with model delay specified using the InputDelay property

To recover the estimation results from previous releases, discard the first n output
samples by shifting your output data by n. For example, to estimate an ARX model with
orders [na nb nk], shift the output by delay n = nk-1, where nk > 1. Use this shifted
data for model estimation, and do not specify the delay during estimation. Specify the
delay in the InputDelay property of the estimated model.

n = nk-1;
data2 = nkshift(data,n);
m = arx(data2,[na nb 1]);
m.InputDelay = n;

Phase-Wrap Branch Option: Specify cutoff point for wrapping
phase in response plots
By default, response plots that show phase response, such as Bode and Nichols plots,
display the exact phase. You can make these plots wrap the phase into the interval [–
180º,180º) by checking Wrap Phase in the plot Property Editor or the Toolbox
Preferences Editor.

In R2016b, checking Wrap Phase enables a new Branch field that lets you specify the
value at which accumulated phase wraps in the response plot. For example, entering 0
causes the plot to wrap the phase into the interval [0º,360º).

At the command line, turn on phase wrapping by setting the PhaseWrapping option of
bodeoptions or iddataPlotOptions to 'on'. Specify the phase-wrap cutoff point
using the new PhaseWrappingBranch option.

In R2015b and R2016a, phase-wrapped plots used the interval [0º,360º). Before R2015b,
phase-wrapped plots used the interval [–180º,180º).

R2016b

6-6

https://www.mathworks.com/help/releases/R2016b/ident/ref/bodeoptions.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/iddataplotoptions.html

Functionality Being Removed or Changed
Functionality Result Use This Instead Compatibility

Considerations
Estimation of transfer
functions from
frequency-domain data,
using the tfest
command.

Still
runs

Not applicable The estimation results may not
match results from previous
releases because a new
estimation algorithm is used.
To perform estimation using
the previous algorithm, append
'-R2016a' to the syntax:

sys = tfest(___ ,'-R2016a')

For more information, see
“Frequency-Domain
Identification Improvements:
Identify transfer function
models faster and more
accurately from frequency-
response data” on page 6-2.

Linear model estimation
option Focus specified
as a filter, prefilter.
For example:
opt = arxOptions;
opt.Focus =
prefilter;

Still
runs

opt = arxOptions;
opt.WeightingFilt
er = prefilter;

The WeightingFilter
property is now set to
prefilter and Focus is
'simulation'.
For more information, see
“Reorganization of Focus
Estimation Option: Increased
flexibility for configuring linear
model estimation” on page 6-3.

Linear model estimation
option Focus specified
as 'stability'. For
example:
opt = arxOptions;
opt.Focus =
'stability';

Still
runs

opt = arxOptions;
opt.EnforceStabil
ity = 1;

The EnforceStability
property is now set to 1 and
Focus is 'prediction'.
For more information, see
“Reorganization of Focus
Estimation Option: Increased
flexibility for configuring linear
model estimation” on page 6-3.

6-7

https://www.mathworks.com/help/releases/R2016b/ident/ref/tfest.html

Functionality Result Use This Instead Compatibility
Considerations

Estimation of transfer
functions from
frequency-domain data,
using the default
tfestOptions option
set.

Still
runs

To enforce stability,
use the
EnforceStability
option.

The stability constraint is no
longer enforced by default
during estimation.
For more information, see
“Reorganization of Focus
Estimation Option: Increased
flexibility for configuring linear
model estimation” on page 6-3.

Estimation of linear
models with delays using
time-domain data.

Still
runs

Not applicable The estimation results might
not match results from
previous releases due to a
change in the handling of
delays. To recover the results
from previous releases, update
your scripts as described in
“Handling of delays during
linear model estimation using
time-domain data” on page 6-5.

R2016b

6-8

https://www.mathworks.com/help/releases/R2016b/ident/ref/tfestoptions.html

R2016a

Version: 9.4

New Features

Bug Fixes

Compatibility Considerations

7

Improved Time-Series Forecasting: Forecast linear and
nonlinear model output
The forecast command predicts time-series data in the future using a linear or
nonlinear identified model. The command now supports new features:

• You can forecast the output of nonlinear models (nonlinear ARX and nonlinear grey-
box). Previously, forecast only supported linear models.

• forecast returns the standard deviation of the forecasted output for identified
nonlinear grey-box models and all linear models.

• forecast also computes the state trajectory into the future and returns the standard
deviation of the state trajectory.

Use forecast for prognostic applications. For an example, see Perform Multivariate
Time Series Forecasting.

Updates to resid command syntax and output plot
The resid command has the following changes to syntax and output plot:

• You can use residOptions to specify the maximum lag for residual correlation and
impulse response calculations.

• You can plot the residual for multiple identified systems (sys1, ... sysN) at the same
time. Use the following syntax:

resid(Data,sys1,...,sysN)

You can also specify the line specifications for the plots, including line style, line color,
and marker type. Use the following syntax:

resid(Data,sys1,Linespec1,...,sysN,Linespecn)
• The residual correlation plots for all input-output combinations of multi-input multi-

output systems now appear at the same time in the plot window. You no longer need to
press a key to view different correlation plots. To choose the inputs and residuals to
display, right-click the plot, and use the context menu.

• The Bode plot of the frequency response from the residuals to the inputs now plots the
phase, in addition to the magnitude of the response.

R2016a

7-2

https://www.mathworks.com/help/releases/R2016a/ident/ref/forecast.html
https://www.mathworks.com/help/releases/R2016a/ident/ug/forecasting-predator-prey-populations.html
https://www.mathworks.com/help/releases/R2016a/ident/ug/forecasting-predator-prey-populations.html
https://www.mathworks.com/help/releases/R2016a/ident/ref/resid.html
https://www.mathworks.com/help/releases/R2016a/ident/ref/residoptions.html

Compatibility Considerations
If you specify the maximum lag using the syntax resid(sys,Data,Type,MaxLag), then
consider using residOptions to specify the maximum lag.

Compute state trajectory standard deviation using sim, and
specify initial state covariance
The sim command now supports the following new features:

• You can compute the standard deviation, x_sd, of the estimated state trajectory, x, of
state-space models. Use the following syntax:

[y,y_sd,x,x_sd] = sim(sys,udata)

Here, y and y_sd are the simulated response and standard deviation of an identified
model, sys. The input data is udata.

• You can also specify the covariance of initial states when computing simulated
response. To specify the covariance, use the X0Covariance option of simOptions.

findstates command returns covariance of estimated states
The covariance of estimated states is now returned in the Report output of findstates.
To calculate the covariance, use the following syntax:

[x0,Report]= findstates(___)

Here, x0 is the estimated states, and Report.Covariance returns the covariance of x0.
Use Report with any of the input arguments of findstates.

data2state command estimates current states of all types of
identified models
You can now use the data2state command to estimate the current states of all linear
and nonlinear identified models. Previously, data2state was available only for nonlinear
ARX models.

7-3

https://www.mathworks.com/help/releases/R2016a/ident/ref/residoptions.html
https://www.mathworks.com/help/releases/R2016a/ident/ref/sim.html
https://www.mathworks.com/help/releases/R2016a/ident/ref/simoptions.html
https://www.mathworks.com/help/releases/R2016a/ident/ref/findstates.html
https://www.mathworks.com/help/releases/R2016a/ident/ref/data2state.html

New examples showing application of system identification
tools for diagnostics and prognostics
The new examples are:

• Perform Multivariate Time Series Forecasting — This example uses the forecast
command for predicting future values of multivariate time series data.

• Detect Abrupt System Changes Using Identification Techniques — This example
compares the use of segment command and online estimation techniques for
detecting changes in a system.

The new examples add to the suite of existing examples in the Diagnostics and
Prognostics category.

Functionality Being Removed or Changed
Functionality Result Use This Instead Compatibility

Considerations
MaxLag = 30;
resid(sys,Data,Type
,MaxLag)

Still
runs

opt =
residOptions('Max
Lag',30);
resid(Data,sys,Ty
pe,opt)

For more information, see
“Updates to resid command
syntax and output plot” on
page 7-2.

a, b, c, d, and k
properties of idss

Still
runs

A, B, C, D, and K,
respectively.

Replace all instances of a, b, c,
d, and k with A, B, C, D, and K,
respectively.

num, den, and ioDelay
properties of idtf

Still
runs

Numerator,
Denominator, and
IODelay,
respectively.

Replace all instances of num,
den, and ioDelay with
Numerator, Denominator,
and IODelay, respectively.

a, b, c, d, f, and
ioDelay properties of
idpoly

Still
runs

A, B, C, D, F, and
IODelay,
respectively.

Replace all instances of a, b, c,
d, f, and ioDelay with A, B, C,
D, F, and IODelay,
respectively.

b and f properties of
idnlhw

Still
runs

B and F, respectively. Replace all instances of b and
f with B and F, respectively.

R2016a

7-4

https://www.mathworks.com/help/releases/R2016a/ident/ug/forecasting-predator-prey-populations.html
https://www.mathworks.com/help/releases/R2016a/ident/ref/forecast.html
https://www.mathworks.com/help/releases/R2016a/ident/ug/recursive-estimation-and-data-segmentation-techniques-in-system-identification-toolbox.html
https://www.mathworks.com/help/releases/R2016a/ident/ref/segment.html
https://www.mathworks.com/help/releases/R2016a/ident/diagnostics-and-prognostics.html
https://www.mathworks.com/help/releases/R2016a/ident/diagnostics-and-prognostics.html
https://www.mathworks.com/help/releases/R2016a/ident/ref/idss.html
https://www.mathworks.com/help/releases/R2016a/ident/ref/idtf.html
https://www.mathworks.com/help/releases/R2016a/ident/ref/idpoly.html
https://www.mathworks.com/help/releases/R2016a/ident/ref/idnlhw.html

Functionality Result Use This Instead Compatibility
Considerations

a, b, c, d, k,
Structure.FcnType,
and
Structure.ExtraArgs
properties of idgrey

Still
runs

A, B, C, D, K,
Structure.Functio
nType, and
Structure.ExtraAr
guments,
respectively.

Replace all instances of a, b, c,
d, k, Structure.FcnType,
and Structure.ExtraArgs
with A, B, C, D, K,
Structure.FunctionType,
and
Structure.ExtraArguments
, respectively.

7-5

https://www.mathworks.com/help/releases/R2016a/ident/ref/idgrey.html

R2015b

Version: 9.3

New Features

Bug Fixes

Compatibility Considerations

8

Online Parameter Estimation Commands: Implement and
deploy recursive estimators with MATLAB Compiler or MATLAB
Coder
You can now estimate models online at the command-line using new online estimation
commands: recursiveAR, recursiveARMA, recursiveARX, recursiveARMAX,
recursiveOE, recursiveBJ, and recursiveLS. For more information, see Perform
Online Parameter Estimation at the Command Line.

You can then deploy the generated code or standalone application in your target
hardware using MATLAB Compiler or MATLAB Coder.

Compatibility Considerations
The old recursive estimators, rarx, rarmax, roe, and rbj, are not compatible with
MATLAB Compiler or MATLAB Coder, and may be removed in a future release. Use the
new online estimation commands instead.

Bayesian and Akaike Information Criteria (BIC and AIC)
Metrics: Compare identified models and select orders
Bayesian Information Criteria (BIC) and Akaike Information Criteria (AIC) are now
computed during model estimation. These metrics provide a measure of model quality
that you can use to compare different models and pick the best one. The most accurate
model has the smallest AIC and BIC values.

The software computes and stores the following new values in the Report.Fit property
of the estimated model:

• Raw AIC (AIC)
• Small sample-size corrected AIC (AICc)
• Normalized AIC (nAIC)
• Bayesian Information Criteria (BIC)

For more information on these metrics, see Loss Function and Model Quality Metrics.

Alternatively, you can use the value = aic(___ ,measure) syntax to return the
various AIC values. For more information, see the aic reference page.

R2015b

8-2

https://www.mathworks.com/help/releases/R2015b/ident/ug/what-is-online-estimation.html
https://www.mathworks.com/help/releases/R2015b/ident/ug/estimate-parameters-online-at-the-command-line.html
https://www.mathworks.com/help/releases/R2015b/ident/ug/estimate-parameters-online-at-the-command-line.html
https://www.mathworks.com/help/releases/R2015b/ident/ref/rarx.html
https://www.mathworks.com/help/releases/R2015b/ident/ref/rarmax.html
https://www.mathworks.com/help/releases/R2015b/ident/ref/roe.html
https://www.mathworks.com/help/releases/R2015b/ident/ref/rbj.html
https://www.mathworks.com/help/releases/R2015b/ident/ug/model-quality-metrics.html
https://www.mathworks.com/help/releases/R2015b/ident/ref/aic.html

procest command returns estimated input offsets
You can now use the following syntax for returning the estimated value of the offset in
input signal:

[sys,offset] = procest(___)

procest automatically estimates the input offset when the model contains an integrator,
or when you set the InputOffset estimation option to 'estimate' using
procestOptions.

Unified sim command for simulating linear and nonlinear
identified models
The syntaxes for simulating linear and nonlinear identified models have been unified into
a single sim command. Starting in R2015b, use a simOptions option set to configure
your simulation. The previous syntax for nonlinear model simulation will continue to work
in future releases.

Compatibility Considerations
• If your code uses any of the following functionality when simulating nonlinear models,

consider updating the code.

Nonlinear Model Functionality Use This Instead
idnlarx, idnlhw or
idnlgrey

Simulate model with additive
noise using y =
sim(model,u,'Noise')

opt =
simOptions('AddNoise
',true);
y =
sim(model,y,opt);

idnlarx, idnlhw or
idnlgrey

Simulate models with initial
states specified using y =
sim(model,u,'InitialSta
te',init)

opt =
simOptions('InitialC
ondition',init);
y =
sim(model,y,opt);

idnlgrey Return simulation final states
using [y,y_sd,XFINAL] =
sim(model,u)

[y,y_sd,x] =
sim(model,u);
XFINAL = x(end,:)';

8-3

https://www.mathworks.com/help/releases/R2015b/ident/ref/procest.html
https://www.mathworks.com/help/releases/R2015b/ident/ref/procestoptions.html
https://www.mathworks.com/help/releases/R2015b/ident/ref/sim.html
https://www.mathworks.com/help/releases/R2015b/ident/ref/simoptions.html

Option for setting orientation of input-output data plots
You can now specify the orientation of input-output data plots created using plot. Display
options for input-output data include:

• All in one row
• All in one column
• All outputs in a column, and all inputs in a second column
• All outputs in a row, and all inputs in a second row

To do so in the plot window, right-click the plot, and choose Orientation option from the
context menu.

At the command line, use the Orientation option of the iddataPlotOptions option
set.

Updates to compare command plot interface
The plot generated using compare has the following changes:

• Fit%, the normalized root mean square measure of the goodness of the fit, now
displays in the legend of the plot instead of in a separate panel to the right of the plot.

• The context menu now has the following new options:

• I/O Grouping — Use this option to plot data I/O channels in their own separate
axes (None), or group them together (All).

• Characteristics > Mean Value — Use this option to view the mean value of the
data.

• Data Experiment — For multi-experiment data only. Use this option to toggle
between data from different experiments. This option replaces the separate tabs
that displayed multi-experiment data in the plot.

To access the context menu, right-click the plot.

Modified normalized gradient algorithm for online estimation
To prevent jumps in estimated parameters, the normalized gradient algorithm now
includes a bias term in the scaling factor of the adaptation gain. For details about the

R2015b

8-4

https://www.mathworks.com/help/releases/R2015b/ident/ref/iddataplot.html
https://www.mathworks.com/help/releases/R2015b/ident/ref/iddataplotoptions.html
https://www.mathworks.com/help/releases/R2015b/ident/ref/compare.html

algorithm, see Recursive Algorithms for Online Parameter Estimation. The default value
of the bias is eps. Increase the bias when you see jumps in the estimated parameters.

• To change the bias in Simulink, in the Block Parameters dialog box of Recursive
Polynomial Model Estimator and Recursive Least Squares Estimator blocks, in the
Algorithm and Block options tab, use the Normalization Bias field.

• To change the bias at the command line, use the NormalizationBias property of the
online estimation commands on page 8-2.

Change in output and initial estimate specification of
Recursive Polynomial Model Estimator block
The dimensions of Recursive Polynomial Model Estimator block output and initial
estimate specification have changed.

• The Parameters outport of the block now outputs the estimated parameters A, B, C, D,
and F as row vectors. For MISO polynomial models, B is a matrix where the i-th row
parameters correspond to the i-th input. Previously, the estimated parameters were
output as column vectors.

• In the block dialog box Model Parameters tab, if Initial Estimate is set to
Internal, specify the initial parameter guess (Initial A(q), Initial B(q), Initial
C(q), Initial D(q), or Initial F(q)) as a row vector only. Previously, initial guesses
could also be specified as column vectors. For MISO polynomial models, specify Initial
B(q) as a matrix where i-th row parameters correspond to the i-th input.

Compatibility Considerations
• If your Simulink model requires the estimated parameters output from the block

outport to be a column vector, transpose the block output as follows:

• Split the Parameters outport bus signal into its individual parameter components
(A, B, C, D, and/or F; depending on the model choice) by using the Bus Selector
block from Simulink Signal Routing library.

• Use the Permute Dimensions block from Simulink Math Operations library to
convert each signal into a column vector.

• Combine the parameters back into a bus signal, if necessary, using the Bus Creator
block from Simulink Signal Routing library.

• If you specified the initial guess for any of the parameter values (Initial A(q), Initial
B(q), Initial C(q), Initial D(q), or Initial F(q)) as column vectors, an error occurs

8-5

https://www.mathworks.com/help/releases/R2015b/ident/ug/recursive-algorithms-for-online-estimation.html
https://www.mathworks.com/help/releases/R2015b/ident/ref/recursivepolynomialmodelestimator.html
https://www.mathworks.com/help/releases/R2015b/ident/ref/recursivepolynomialmodelestimator.html
https://www.mathworks.com/help/releases/R2015b/ident/ref/recursiveleastsquaresestimator.html
https://www.mathworks.com/help/releases/R2015b/ident/ref/recursivepolynomialmodelestimator.html

during simulation. Specify them as row vectors. For MISO polynomial models,
transpose the Initial B(q) matrix so that the i-th row parameters correspond to the i-
th input.

Change in input specification of Model Type Converter block
The Model Type Converter block inport now only accepts bus signal elements specified as
row vectors. Previously, you specified the bus elements as column vectors. For MISO data,
specify B polynomial coefficients as a matrix where the i-th row parameters correspond to
the i-th input.

Compatibility Considerations
If you specified the inport bus signal elements as column vectors, an error occurs during
simulation. Specify them as row vectors. For MISO polynomial models, transpose the B
matrix so that the i-th row parameters correspond to the i-th input.

Functionality Being Removed or Changed
Functionality Result Use This Instead Compatibility

Considerations
rarx Warns recursiveAR or

recursiveARX
See “Online Parameter
Estimation Commands:
Implement and deploy
recursive estimators with
MATLAB Compiler or MATLAB
Coder” on page 8-2 for more
information.

rarmax Warns recursiveARMA or
recursiveARMAX

See “Online Parameter
Estimation Commands:
Implement and deploy
recursive estimators with
MATLAB Compiler or MATLAB
Coder” on page 8-2 for more
information.

R2015b

8-6

https://www.mathworks.com/help/releases/R2015b/ident/ref/modeltypeconverter.html

Functionality Result Use This Instead Compatibility
Considerations

roe Warns recursiveOE See “Online Parameter
Estimation Commands:
Implement and deploy
recursive estimators with
MATLAB Compiler or MATLAB
Coder” on page 8-2 for more
information.

rbj Warns recursiveBJ See “Online Parameter
Estimation Commands:
Implement and deploy
recursive estimators with
MATLAB Compiler or MATLAB
Coder” on page 8-2 for more
information.

y =
sim(model,u,'Noise'
) for idnlarx, idnlhw,
or idnlgrey models

Still
works

opt =
simOptions('AddNo
ise',true);
y =
sim(model,y,opt);

See “Unified sim command for
simulating linear and nonlinear
identified models” on page 8-3
for more information.

y =
sim(model,u,'Initia
lState',init) for
idnlarx, idnlhw, or
idnlgrey models

Still
works

opt =
simOptions('Initi
alCondition',init
);
y =
sim(model,y,opt);

See “Unified sim command for
simulating linear and nonlinear
identified models” on page 8-3
for more information.

[y,y_sd,XFINAL] =
sim(model,u) for
idnlgrey models

Still
works

[y,y_sd,x] =
sim(model,u);
XFINAL =
x(end,:)';

See “Unified sim command for
simulating linear and nonlinear
identified models” on page 8-3
for more information.

Simulink model
requiring output from
Parameters outport of
Recursive Polynomial
Model Estimator block
to be a column vector.

Error Transpose the block
output.

See “Change in output and
initial estimate specification of
Recursive Polynomial Model
Estimator block” on page 8-5
for more information.

8-7

Functionality Result Use This Instead Compatibility
Considerations

Initial parameter guess
specified as column
vector in Recursive
Polynomial Model
Estimator block.

Error Specify as row vector.
For MISO polynomial
models, transpose the
original Initial B(q)
matrix.

See “Change in output and
initial estimate specification of
Recursive Polynomial Model
Estimator block” on page 8-5
for more information.

Inport bus signal
elements specified as
column vectors in Model
Type Converter block.

Error Specify the bus
elements as row
vectors. For MISO
polynomial models,
transpose the original
B matrix.

See, “Change in input
specification of Model Type
Converter block” on page 8-6
for more information.

R2015b

8-8

R2015a

Version: 9.2

New Features

Bug Fixes

Compatibility Considerations

9

nlgreyest command for nonlinear grey-box model estimation
You can use the nlgreyest estimator to estimate nonlinear grey-box models. Use the
nlgreyestOptions option set to configure the model estimation objective and search
method used by the estimator. For more information, see the corresponding reference
pages.

Estimation options for nonlinear ARX, Hammerstein-Wiener,
and nonlinear grey-box model estimators
You can use option sets for the nonlinear ARX, Hammerstein-Wiener and nonlinear grey-
box model estimators to configure the model estimation objective and search method.
Instead of using name-value pair input arguments in nlarx and nlhw, or the Algorithm
property of the model, use the following commands:

• nlarxOptions — Option set for nlarx
• nlhwOptions — Option set for nlhw
• nlgreyestOptions — Option set for nlgreyest

To learn more about the estimation options, see the corresponding reference pages.

Compatibility Considerations
• The option sets replace the Algorithm property of nonlinear ARX (idnlarx),

Hammerstein-Wiener (idnlhw), and nonlinear grey-box (idnlgrey) models.

The following table shows the mapping of the fields of Algorithm to those of the
estimation options set.

Algorithm Property Field Option Set Field
LimitError Advanced.ErrorThreshold

R2015a

9-2

https://www.mathworks.com/help/releases/R2015a/ident/ref/nlgreyest.html
https://www.mathworks.com/help/releases/R2015a/ident/ref/nlgreyestoptions.html
https://www.mathworks.com/help/releases/R2015a/ident/ref/nlarx.html
https://www.mathworks.com/help/releases/R2015a/ident/ref/nlhw.html
https://www.mathworks.com/help/releases/R2015a/ident/ref/nlarxoptions.html
https://www.mathworks.com/help/releases/R2015a/ident/ref/nlhwoptions.html
https://www.mathworks.com/help/releases/R2015a/ident/ref/nlgreyestoptions.html
https://www.mathworks.com/help/releases/R2015a/ident/ref/idnlarx.html
https://www.mathworks.com/help/releases/R2015a/ident/ref/idnlhw.html
https://www.mathworks.com/help/releases/R2015a/ident/ref/idnlgrey.html

Algorithm Property Field Option Set Field
Criterion/Weighting OutputWeight

• If, Algorithm.Criterion was 'det', use
OutputWeight = 'noise'.

• If, Algorithm.Criterion was 'trace',
set OutputWeight to the values in
Algorithm.Weighting.

MaxIter SearchOption.MaxIter
Tolerance SearchOption.Tolerance
MaxSize Advanced.MaxSize
Advanced.Search SearchMethod and SearchOptions

• For nonlinear ARX models, the Focus property has been replaced by the Focus option
in the nlarxOptions option set. See the reference page for more information.

Reorganization of nonlinear model estimation reports
A new property of nonlinear models, Report, provides information on the estimation.
This read-only property replaces the EstimationInfo property and provides additional
information regarding:

• Estimated parameters. For nonlinear grey-box models, it also contains the values of
initial states, and parameter and initial state covariance matrices.

• The option set used for estimation.
• Information on data used for estimation, such as percentage fit to estimation data and

the mean square error.

The Report fields are mostly uniform for the identified nonlinear models. However,
certain fields of Report are model dependent.

To learn more about the estimation report, see Estimation Report, and the model and
estimator reference pages.

Compatibility Considerations
• The Report property replaces the EstimationInfo property of nonlinear ARX,

Hammerstein-Wiener, and nonlinear grey-box models.

9-3

https://www.mathworks.com/help/releases/R2015a/ident/ref/nlarxoptions.html
https://www.mathworks.com/help/releases/R2015a/ident/ug/estimation-report.html

The following table shows the mapping of the fields of EstimationInfo to those of
Report.

EstimationInfo Field Report Field
LossFcn Fit.LossFcn
FPE Fit.FPE
DataName DataUsed.Name
DataLength DataUsed.Length
DataTs DataUsed.Ts
DataDomain DataUsed.Type
DataInterSample DataUsed.InterSample
WhyStop Termination.WhyStop
UpdateNorm Termination.UpdateNorm
LastImprovement Termination.LastImprovement
Iterations Termination.Iterations
InitialState No replacement
Warning No replacement

• For nonlinear grey-box models, the SimulationOptions algorithm property is now a
property of the idnlgrey model itself. See the model reference page for more
information.

findopOptions command to create option set for operating
point computation of nonlinear ARX or Hammerstein-Wiener
models
You can use findopOptions to create an option set for computing the operating point of
a nonlinear ARX (idnlarx) or Hammerstein-Wiener (idnlhw) model. Use the option set
with idnlarx/findop and idnlhw/findop to specify the optimization search options.

Unified findstates command for nonlinear models
The findstates methods of nonlinear ARX, Hammerstein-Wiener, and nonlinear grey-
box models have been replaced with a single findstates command which provides a

R2015a

9-4

https://www.mathworks.com/help/releases/R2015a/ident/ref/idnlgrey.html
https://www.mathworks.com/help/releases/R2015a/ident/ref/findopoptions.html
https://www.mathworks.com/help/releases/R2015a/ident/ref/idnlarx.html
https://www.mathworks.com/help/releases/R2015a/ident/ref/idnlhw.html
https://www.mathworks.com/help/releases/R2015a/ident/ref/idnlarxfindop.html
https://www.mathworks.com/help/releases/R2015a/ident/ref/idnlhwfindop.html
https://www.mathworks.com/help/releases/R2015a/ident/ref/findstates.html

more unified syntax. You can also use findstatesOptions to create an option set for
estimating initial states of the nonlinear models.

Functionality being removed or changed
Functionality What Happens

When You Use This
Functionality?

Use This Instead Compatibility
Considerations

Algorithm property Still works nlarxOptions
nlhwOptions

See “Estimation
options for nonlinear
ARX, Hammerstein-
Wiener, and
nonlinear grey-box
model estimators” on
page 9-2

Focus property of
idnlarx models

Still works Focus option in the
nlarxOptions
option set

See “Estimation
options for nonlinear
ARX, Hammerstein-
Wiener, and
nonlinear grey-box
model estimators” on
page 9-2

EstimationInfo
property

Still works Report property See “Reorganization
of nonlinear model
estimation reports”
on page 9-3

9-5

https://www.mathworks.com/help/releases/R2015a/ident/ref/findstatesoptions.html

R2014b

Version: 9.1

New Features

Bug Fixes

Compatibility Considerations

10

AR, ARMA, Output-Error, and Box-Jenkins online model
estimation with Recursive Polynomial Model Estimator block
The Recursive Polynomial Model Estimator block has been enhanced to estimate the
coefficients of linear time-invariant and linear time-varying AR, ARMA, Output-Error (OE)
or Box-Jenkins (BJ) models. The parameters are estimated as new data becomes available
during the operation of the system. For more information, see Online Estimation.

You can also estimate a state-space model online from these models by using the
Recursive Polynomial Model Estimator and Model Type Converter blocks together.
Connect the outport of the Recursive Polynomial Model Estimator block to the inport of
the Model Type Converter block to obtain online values of the state-space matrices. The
conversion ignores the noise component of the models. In other words, the state-space
matrices only capture the y[k]/u[k] relationship, which is B(q)/F(q) for OE and BJ
models.

Kalman Filter block for estimating states of linear time-
invariant and linear time-varying systems
Use the Kalman Filter block to estimate the states of linear time-invariant and linear time-
varying systems online. The states are estimated as new data becomes available during
the operation of the system. The system can be continuous-time or discrete-time. You can
generate code for this block using code generation products such as Simulink Coder.

You can access this block from the Estimators sublibrary of System Identification Toolbox
library. For an example of using this block, see State Estimation Using Time-Varying
Kalman Filter.

Initial guesses for A(q) and C(q) polynomials in Recursive
Polynomial Model Estimator block
The first element of the initial guesses for the A(q) and C(q) polynomials in the
Recursive Polynomial Model Estimator block must be specified as 1. When the Initial
Estimate option is Internal, you specify these values in the Initial A(q) and Initial
C(q) parameters in the Block Parameters dialog box. When the Initial Estimate option is
External, you specify these values using the InitialParameters inport of the block.

In previous releases, the software auto-scaled these values to 1.

R2014b

10-2

https://www.mathworks.com/help/releases/R2014b/ident/ref/recursivepolynomialmodelestimator.html
https://www.mathworks.com/help/releases/R2014b/ident/online-estimation.html
https://www.mathworks.com/help/releases/R2014b/ident/ref/modeltypeconverter.html
https://www.mathworks.com/help/releases/R2014b/ident/ref/kalmanfilter.html
https://www.mathworks.com/help/releases/R2014b/ident/ug/estimating-states-of-time-varying-systems-using-kalman-filters.html
https://www.mathworks.com/help/releases/R2014b/ident/ug/estimating-states-of-time-varying-systems-using-kalman-filters.html
https://www.mathworks.com/help/releases/R2014b/ident/ref/recursivepolynomialmodelestimator.html

Compatibility Considerations
If you specified the Initial Estimate parameter as Internal, an error occurs during
simulation. If you specified this parameter as External, a warning occurs. Before you
simulate the model, scale the initial guesses for the A(q) and C(q) polynomials by
dividing both these vectors by their first elements.

ident command renamed to systemIdentification
The ident command to open the System Identification app has been renamed to
systemIdentification.

Functionality being removed or changed
Functionality What Happens

When You Use This
Functionality?

Use This Instead Compatibility
Considerations

AR Estimator,
ARMAX Estimator,
ARX Estimator, BJ
Estimator, and OE
Estimator blocks

Still works Recursive Polynomial
Model Estimator

Consider replacing
these blocks with the
Recursive Polynomial
Model Estimator
block to perform
recursive estimation.

PEM Estimator
block

Still works No replacement Not applicable

10-3

https://www.mathworks.com/help/releases/R2014b/ident/ref/systemidentification.html
https://www.mathworks.com/help/releases/R2014b/ident/ref/recursivepolynomialmodelestimator.html
https://www.mathworks.com/help/releases/R2014b/ident/ref/recursivepolynomialmodelestimator.html

R2014a

Version: 9.0

New Features

Bug Fixes

Compatibility Considerations

11

Recursive Least Squares Estimator and Recursive Polynomial
Model Estimator blocks for online model parameter
estimation
Use the Recursive Least Squares Estimator and Recursive Polynomial Model Estimator
blocks to perform online model parameter estimation in Simulink. Online parameter
estimation, also known as online estimation or online tuning, refers to estimating model
parameters as new data becomes available during the operation of the model. You can
generate code for these blocks using code generation products such as Simulink Coder.
For example, you can estimate the coefficients of a time-varying plant from measured
input-output data and feed them to an adaptive controller. After validating the online
estimation in simulation, you can generate code for your Simulink model and deploy the
same to an embedded target.

These blocks are in the Estimators library.

For examples of how to use these blocks, see Preprocess Online Estimation Data and
Validate Online Estimation Results.

Compatibility Considerations
The following blocks will be removed in a future release: AR Estimator, ARMAX Estimator,
ARX Estimator, BJ Estimator, OE Estimator, and PEM Estimator.

Interactive identification of single-input/single-output plants
from measured data in PID Tuner app
As a part of the control design workflow, you can interactively identify a plant using
measured data in the PID Tuner app in Control System Toolbox™. For example, to design
a PID controller for a manufacturing process, you can start with response data from a
bump test on your system. You can import this data instead of a plant model in the tuner.
You can then interactively identify a linear plant model whose response fits the response
data.

The PID Tuner automatically tunes a PID controller for the identified model. You can then
interactively adjust the PID controller gains, and save the identified plant and tuned
controller. For more information, see System Identification for PID Control.

R2014a

11-2

https://www.mathworks.com/help/releases/R2014a/ident/ref/recursiveleastsquaresestimator.html
https://www.mathworks.com/help/releases/R2014a/ident/ref/recursivepolynomialmodelestimator.html
https://www.mathworks.com/help/releases/R2014a/ident/ug/preprocessing-online-estimation-data-in-simulink.html
https://www.mathworks.com/help/releases/R2014a/ident/ug/validating-online-estimation-results.html
https://www.mathworks.com/help/releases/R2014a/control/getstart/system-identification-of-plant-models.html

To access the PID Tuner, enter pidtool at the MATLAB command line. For an example,
see Interactively Estimate Plant Parameters from Response Data.

Interactive identification of single-input/single-output plants
from simulation data when tuning PID Controller blocks using
Simulink Control Design
You can obtain a linear representation of a Simulink model and tune the gains of a PID
Controller block for the plant in the PID Tuner app. The identification-based approach
serves as an alternative to the linearization-based approach and is useful where
linearization fails to yield a good plant model. This functionality requires Simulink Control
Design™ software.

The identification works by simulating the Simulink model and then using the simulated
input-output data to obtain a plant model. You identify the plant using interactive
graphical tools in the PID Tuner app. Next, you use the identified model to tune your PID
Controller block. For example, suppose you want to tune the PID Controller block in a
model that contains a Triggered Subsystem block. The analytical block-by-block
linearization algorithm does not support event-based subsystems, and therefore the
model linearizes to zero. Now, you can simulate the Simulink model for a chosen input
and use the simulated data to identify a plant model. The PID Tuner automatically tunes
the PID controller for the identified model. You can then interactively adjust the
performance of the tuned control system, and save the identified plant and tuned
controller. For more information, see System Identification for PID Control.

To access the PID Tuner, in the PID Controller block dialog box, click Tune. For an
example, see “Design a PID Controller Using Simulated I/O Data” in the Simulink Control
Design documentation.

ssregest, a regularization-based state-space model estimator,
for improved accuracy on short, noisy data sets
You can use ssregest to estimate state-space models. This estimator is known to
perform better than n4sid for short, noisy data sets. For some problems, the quality of fit
using n4sid is sensitive to options, such as N4Horizon, whose values can be difficult to
determine. In comparison, the quality of fit with ssregest is less sensitive to its options,
which makes ssregest simpler to use.

ssregest estimates a regularized ARX model and converts the ARX model to a state-
space model. The software then uses balanced model reduction techniques to reduce the

11-3

https://www.mathworks.com/help/releases/R2014a/control/ref/pidtool.html
https://www.mathworks.com/help/releases/R2014a/control/getstart/interactively-estimate-plant-parameters-from-response-data.html
https://www.mathworks.com/help/releases/R2014a/control/getstart/system-identification-of-plant-models.html
https://www.mathworks.com/help/releases/R2014a/ident/ref/ssregest.html
https://www.mathworks.com/help/releases/R2014a/ident/ref/n4sid.html

state-space model to the specified order. You can specify estimation options for ssregest
using ssregestOptions.

You can also select this estimator in the System Identification Tool. In the State Space
Models dialog box, expand Estimation Options and select Regularized Reduction
from the Estimation Method drop-down list.

plot command for iddata object enhanced
The plot command for input-output data iddata has the following enhancements:

• Multiexperiment data or datasets with more than one input or output channels are
plotted on a single plot

• Input and output channels can be grouped together

You can customize the plot, such as group and ungroup channels, and explore data
characteristics, such as peak and mean value, using the right-click menu.

You can also customize the plot, such as specify axes labels, using iddataPlotOptions.

R2014a

11-4

https://www.mathworks.com/help/releases/R2014a/ident/ref/ssregestoptions.html
https://www.mathworks.com/help/releases/R2014a/ident/ref/iddataplot.html
https://www.mathworks.com/help/releases/R2014a/ident/ref/iddata.html
https://www.mathworks.com/help/releases/R2014a/ident/ref/iddataplotoptions.html

Options set and specification of input delay and noise source
integrator for arxRegul command
You can now use arxRegulOptions to specify regularization options for arxRegul.
Regularization options include the regularization kernel to use, such as 'TC' and 'SE',
and search method for estimating regularization constants.

You can also specify input delay and presence of a noise source integrator as Name-
Value pair arguments in arxRegul.

Compatibility Considerations
Replace [lambda,R] = arxRegul(data,orders,kernel) and [lambda,R] =
arxRegul(data,orders,kernel,max_size) syntaxes with [lambda,R] =
arxRegul(data,orders,options) syntax. Specify kernel and max_size in the
options set created using arxRegulOptions.

11-5

https://www.mathworks.com/help/releases/R2014a/ident/ref/arxreguloptions.html
https://www.mathworks.com/help/releases/R2014a/ident/ref/arxregul.html
https://www.mathworks.com/help/releases/R2014a/ident/ref/arxreguloptions.html

R2013b

Version: 8.3

New Features

Bug Fixes

12

Regularized estimation of linear and nonlinear models for
obtaining parameter values with less variance
You can now obtain regularized estimates of parameters for linear and nonlinear models.
Previously, you could specify this option for correlation model estimation only, using
impulseestOptions.

Regularization reduces variance of estimated model parameters by trading variance for
bias. Regularization is useful for:

• Identifying overparameterized models, such as nonlinear ARX models
• Imposing apriori knowledge of model parameters in structured models, such as grey-

box models
• Incorporating knowledge of system behavior in ARX and FIR models

Using regularization adds a penalty proportional to the parameter dimension and values
in the cost function that is minimized for estimation. Without regularization, the
parameter estimates are obtained by minimizing a weighted quadratic norm of the
prediction errors ε(t,θ):

VN θ = 1
N ∑

t = 1

N
ε2(t, θ)

where t is the time variable, N is the number of data samples and ε(t,θ) is the predicted
error computed as the difference between the observed output and the predicted output
of the model.

A regularized estimation minimizes:

V N θ = 1
N ∑

t = 1

N
ε2 t, θ + 1

N λθTRθ,

where λ is a constant that trades off variance for bias in the estimated values of
parameters θ. R is an associated weighting matrix.

For more information on regularization, see Regularized Estimates of Model Parameters.

You can specify the regularization constants Lambda, R, and Nominal at the command
line or in the System Identification Tool:

R2013b

12-2

https://www.mathworks.com/help/releases/R2013b/ident/ref/impulseestoptions.html
https://www.mathworks.com/help/releases/R2013b/ident/ug/regularized-estimates-of-model-parameters.html

• At the command line, use the Regularization option available in the estimation
options set (tfestOptions, ssestOptions,...) for linear models.

For nonlinear models, the option is available in the Algorithm property of idnlarx,
idnlhw, and idnlgrey models.

For ARX models, you can generate Lambda and R values automatically from a given
regularization kernel using the arxRegul command.

See the estimator reference pages and Regularized Identification of Dynamic Systems
for examples.

• In the System Identification Tool, click Regularization in the linear model estimation
dialog box or click Estimation Options in the Nonlinear Models dialog box.

For an example, see Estimate Regularized ARX Model Using System Identification
Tool.

ssarx subspace identification method for robust estimation of
state-space models using closed-loop data
N4Weight, which represents the weighting scheme used for singular-value decomposition
by the N4SID algorithm, now includes a ssarx option. This option is an ARX estimation-
based algorithm to compute the weighting. Specifying this option allows the N4SID
algorithm to compute unbiased estimates of the model parameters when using data that
is collected in a closed-loop operation. For more information about the algorithm, see
Jansson, M., "Subspace identification and ARX modeling", 13th IFAC Symposium on
System Identification, Rotterdam, The Netherlands, 2003.

To specify this option:

• At the command line, set the N4Weight option in n4sidOptions or ssestOptions
to 'ssarx'.

• In the System Identification Tool, in the State Space Models dialog box, expand
Estimation Options and select SSARX from the N4Weight drop-down list.

For an example of using the subspace algorithm for closed-loop data, see the n4sid
reference page.

12-3

https://www.mathworks.com/help/releases/R2013b/ident/ref/tfestoptions.html
https://www.mathworks.com/help/releases/R2013b/ident/ref/ssestoptions.html
https://www.mathworks.com/help/releases/R2013b/ident/ref/idnlarx.html
https://www.mathworks.com/help/releases/R2013b/ident/ref/idnlhw.html
https://www.mathworks.com/help/releases/R2013b/ident/ref/idnlgrey.html
https://www.mathworks.com/help/releases/R2013b/ident/ref/arxregul.html
https://www.mathworks.com/help/releases/R2013b/ident/examples/regularized-identification-of-dynamic-systems.html
https://www.mathworks.com/help/releases/R2013b/ident/ug/estimate-regularized-arx-model.html
https://www.mathworks.com/help/releases/R2013b/ident/ug/estimate-regularized-arx-model.html
https://www.mathworks.com/help/releases/R2013b/ident/ref/n4sidoptions.html
https://www.mathworks.com/help/releases/R2013b/ident/ref/ssestoptions.html
https://www.mathworks.com/help/releases/R2013b/ident/ref/n4sid.html

Redesigned state-space model and initial model refinement
dialog boxes
The State Space Models and Linear Model Refinement dialog boxes have been redesigned
to improve state-space model estimation and initial model refinement workflows.

To open the State Space Models dialog box, select Estimate > State Space Models in
the System Identification Tool.

To access the redesigned Linear Model Refinement dialog box, in the System
Identification Tool, select Estimate > Refine Existing Models.

R2013b

12-4

The initial model must be in the Model Board of the System Identification Tool or a
variable in the MATLAB workspace. This model can be a state-space, polynomial, process,
or transfer function model.

For more information, click Help in the dialog boxes.

getpar and setpar commands to obtain and set parameter
attributes of identified linear models
You can now use getpar with identified linear models to obtain parameter values, free or
fixed status, minimum/maximum bounds, and labels. Identified linear models include
process, input-output polynomial, state-space, transfer function, and grey-box models.

Similarly, use setpar to set these parameter attributes.

Unstable models option added to System Identification Tool
You can now estimate unstable models in the System Identification Tool. You can use this
option to:

12-5

https://www.mathworks.com/help/releases/R2013b/ident/ref/idparametricgetpar.html
https://www.mathworks.com/help/releases/R2013b/ident/ref/idparametricsetpar.html

• Estimate transfer function models using frequency-domain data.
• Estimate state-space models using time- or frequency-domain data.
• Refine linear models using time- and frequency-domain data.

This functionality is the same as setting the estimation option Focus to 'prediction' at
the command line.

The option allows the estimation process to use parameter values that might lead to
unstable models. An unstable model is delivered only if it produces a better fit to the data
than other stable models computed during the estimation process. Such an unstable
model might be useful, if, for example, you plan to design a controller for the model.

To set this option in the Transfer Function dialog box, expand Estimation Options and
select the Allow unstable models check box. In the State Space Models and Linear
Model Refinement dialog boxes, this option is selected by default.

SamplingGrid property for tracking dependence of array of
sampled models on variable values
For arrays of identified linear (IDLTI) models that are derived by sampling one or more
independent variables, the new SamplingGrid property keeps track of the variable
values associated with each model in the array. This information is shown when displaying
or plotting the model array. The information is useful to trace results back to the
independent variables.

Set this property to a structure whose fields are named after the sampling variables and
contain the sample values associated with each model. All sampling variables should be
numeric and scalar valued, and all arrays of sample values should be commensurate with
the model array.

For example, if you collect data at various operating points of a system, you can identify a
model for each operating point separately and then stack the results together into a
single system array. You can tag the individual models in the array with information
regarding the operating point:

nominal_engine_rpm = [1000 5000 10000];
sys.SamplingGrid = struct('rpm',nominal_engine_rpm)

where sys is an array containing three identified models obtained at rpms 1000, 5000,
and 10000, respectively.

R2013b

12-6

R2013a

Version: 8.2

Bug Fixes

13

R2012b

Version: 8.1

New Features

Bug Fixes

Compatibility Considerations

14

Regularized estimates of impulse response, specification of
transport delays and estimation options using impulseest
You can obtain regularized estimates of impulse response using the regularization kernel
(RegulKernel) estimation option. Regularization reduces variance of estimated model
coefficients and produces a smoother response by trading variance for bias. You can also
configure estimation options such as prefilter order and data offsets. You use
impulseestOptions to specify the estimation options and pass them as an input to
impulseest.

You can also specify filter orders and transport delays as inputs to impulseest.

Compatibility Considerations
• Using a time vector as an input to impulseest or specifying the 'noncausal' flag

warns and will be removed in a future version. Specify the order of the impulse
response model instead.

• To compute the acausal part of the response up to a negative lag L, set the input delay
input argument to -L.

translatecov command for translating model covariance
across transformations
You can use translatecov to translate model covariance across model transformations
such as continuous- and discrete-time conversions, concatenation and conversions to
different model types. Previously, model covariance was lost when you performed such
operations on a model directly. translatecov lets you perform these operations while
also translating the covariance data. For example, transform an estimated continuous-
time model mc to discrete-time:

md = c2d(mc,Ts);
md2 = translatecov(@(x)c2d(x,Ts),mc)

The first operation produces a discrete-time model, md, which does not contain parameter
covariance data. The second operation produces the model, md2, which has the same
structure and parameter values as mdbut contains parameter covariance data.

R2012b

14-2

https://www.mathworks.com/help/releases/R2012b/ident/ref/impulseestoptions.html
https://www.mathworks.com/help/releases/R2012b/ident/ref/impulseest.html
https://www.mathworks.com/help/releases/R2012b/ident/ref/translatecov.html

ssform command for quick configuration of state-space model
structure
You can use ssform to configure model parameterization, feedthrough and disturbance
dynamics. This command lets you quickly configure these properties when estimating
state-space models in a structured way. You can use this command as a simpler
alternative to explicitly modifying the Structure property of the idss model for some
commonly applied changes. For example, typing
ssform(model,'Form','canonical','DisturbanceModel','estimate')
configures the model structure such that:

• Its A, B, and C matrices are in observability canonical form
• The K matrix entries are all treated as free parameters

Feedthrough specification for discrete-time transfer function
model estimation
When estimating a discrete-time transfer function model, you can specify whether the
model has feedthrough. Use the Feedthrough name-value pair in tfest or click
Feedthrough in the graphical interface. For MIMO systems, you can specify feedthrough
for individual channels or a common value across all channels.

14-3

https://www.mathworks.com/help/releases/R2012b/ident/ref/ssform.html
https://www.mathworks.com/help/releases/R2012b/ident/ref/idss.html
https://www.mathworks.com/help/releases/R2012b/ident/ref/tfest.html

R2012a

Version: 8.0

New Features

Bug Fixes

Compatibility Considerations

15

Summary
Important new features and changes in the System Identification Toolbox software for this
release include:

• New functions that perform continuous-time estimation for state-space and transfer
function models.

• Support for multi-output estimation for polynomial models (such as ARMAX, OE, and
BJ) and process models.

• A new, uniform design for linear, parametric models. You can specify whether a
coefficient should be estimated and now impose minimum/maximum bounds on
estimated coefficients in a standardized manner.

• Consolidation of the functions dealing with linear time-invariant systems in the Control
System Toolbox software. This unification of code allows for a streamlined workflow in
estimating models and analyzing them and improves numerical accuracy and
consistency.

• Many commands now have a more unified syntax, but, with few exceptions, old syntax
continues to work in this release for backward compatibility. Incompatibilities
introduced this release mainly involve configuration of estimation options, translation
of parameter covariance, reordering of output arguments for some functions and the
treatment of certain model properties.

Note Instances where the changes will break existing code or yield different results
have been marked as "Backward incompatibility".

New Features in This Version
New features this release include:

• “Continuous-Time Transfer Function Identification for Time- and Frequency-Domain
Data” on page 15-3

• “Time-Series Modeling and Forecasting, Including Generating ARIMA Models”
on page 15-3

• “Estimation of Multi-Output Polynomial and Process Models” on page 15-4
• “Interactive Response Plots with Better Look and Feel” on page 15-4
• “Models Created with System Identification Toolbox Can Be Used Directly with

Control System Toolbox Functions” on page 15-5

R2012a

15-2

• “Improved Reliability of Numerical Computations” on page 15-5
• “Estimating Functions and Estimation Option Sets” on page 15-6
• “Model Analysis and Validation Option Sets” on page 15-7
• “Identified Linear Models” on page 15-8
• “System Identification Tool GUI” on page 15-17

Continuous-Time Transfer Function Identification for Time- and Frequency-
Domain Data

A new function, tfest, lets you estimate a linear transfer function based on a system’s
response. tfest can be used for time- and frequency-domain data.

The output of tfest is an idtf model, which is a new identified linear model. An idtf
model stores the identified numerator, denominator, and any transport delays using its
num, den, and ioDelay properties, respectively.

For information regarding estimating a continuous-time transfer function using time-
domain data, see How to Estimate Transfer Function Models by Specifying Number of
Poles.

For information regarding estimating a continuous-time transfer function using
frequency-domain data, see How to Estimate Transfer Function Models with Transport
Delay to Fit Given Frequency Response Data.

Time-Series Modeling and Forecasting, Including Generating ARIMA Models

Forecasting

A new function, forecast, lets you forecast the response of an identified linear model for
a specified future time interval. You may also specify the future inputs for models that are
not time-series models.

forecast complements the functionality of predict, which evaluates fixed-step ahead
predictions on historic data.

Use forecastOptions to create an option set to specify forecasting options.

For more information, see forecast and forecastOptions.

15-3

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/tfest.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idtf.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/btdfqjh.html#btdkxvg
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/btdfqjh.html#btdkxvg
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/btdfqjh.html#btdk1s7
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/btdfqjh.html#btdk1s7
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/forecast.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/forecastoptions.html

Generating ARIMA Models

A new property for idpoly models, IntegrateNoise, designates if a model output
contains an integrator in its noise source. Use the IntegrateNoise property to create,
for example, ARI, ARIMA, ARIX, and ARIMAX models.

The IntegrateNoise property takes a logical vector of length Ny, where Ny is the
number of outputs.

For more information, see Estimating ARIMA Models.

Estimation of Multi-Output Polynomial and Process Models
Multi-Output Polynomial Models

idpoly models can now represent multi-output polynomial models. Use idpoly to create
a multi-output polynomial model. You can also use the various estimator functions (ar,
arx, bj, oe, and armax) to estimate a multi-output idpoly model.

A new function, polyest, may also be used to estimate a multi-output polynomial model
of arbitrary structure. For more information, see polyest and polyestOptions.

Compatibility Consideration:Backward incompatibility. See “idarx Models No
Longer Returned in Multi-Output Model Estimation” on page 15-21.
Multi-Output Process Models

idproc models can now represent multi-output process models. Use idproc to create a
multi-output process model. You can also use the new process model estimator function,
procest, to estimate a multi-output idproc model.

For more information, see procest and procestOptions.

Interactive Response Plots with Better Look and Feel

Enhanced response plots for identified linear models allow you to interactively:

• Choose the system characteristics that are displayed. To view a system characteristic,
right-click on the plot, select Characteristics, and then select the system
characteristic of interest.

• Modify plot properties, such as whether the grid is on or off, axes labels and units,
advanced plot options, etc. To modify the plot properties, right-click on the plot, and
select Properties. The Property Editor dialog box opens. Modify the plot property of
interest.

R2012a

15-4

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idpoly.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/btdop7s.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idpoly.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/ar.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/arx.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/bj.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/oe.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/armax.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/polyest.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/polyestoptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idproc.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/procest.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/procestoptions.html

You can plot the confidence intervals associated with identified linear models. You can
now plot the confidence interval interactively, by right-clicking on the plot and selecting
Characteristics > Confidence Region. You can also use the new function,
showConfidence, to display the confidence region on a plot via the command line.

Models Created with System Identification Toolbox Can Be Used Directly with
Control System Toolbox Functions

Identified linear models that you create using System Identification Toolbox software can
now be used directly with Control System Toolbox analysis and compensator design
commands. In previous releases, doing so required conversion to Control System Toolbox
model types.

Identified linear models include idfrd, idss, idproc, idtf, idgrey, and idpoly
models.

Identified linear models can be used directly with:

• Any Control System Toolbox or Robust Control Toolbox™ functions that operate on
dynamic systems, including:

• Response plots — nichols, margin, and rlocus.
• Model simplification — pade, balred, and minreal.
• System interconnections — series, parallel, feedback, and connect

For a complete list of these functions, type:

methods('DynamicSystem')
• Analysis and design tools such as ltiview, sisotool, and pidtool.
• The LTI System block in Simulink models.

Improved Reliability of Numerical Computations

Algorithm sharing between the System Identification Toolbox and the Control System
Toolbox products increase the accuracy and consistency of results for various operations.
Operations affected include frequency-response and pole-zero computation, model
conversion, settling-time deduction, and model discretization (c2d and d2c).

The handling of parameter covariance for over-parameterized systems has also improved.
You can now fetch parameter covariance data in a factored form for over-parameterized
systems, where the raw covariance matrix is ill-defined.

15-5

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/showconfidence.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idfrd.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idss.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idproc.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idtf.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idgrey.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idpoly.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/nichols.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/margin.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/rlocus.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pade.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/balred.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/minreal.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/series.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/parallel.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/feedback.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/connect.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiview.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/sisotool.html
https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pidtool.html

Estimating Functions and Estimation Option Sets

You can use the new estimating functions tfest, ssest, procest, greyest, polyest,
and impulseest to estimate various model types. The new functions are based on the
prediction error method, PEM.

Also, you can now configure model estimation objective functions and search schemes
using dedicated option sets. To create and configure the option set for a model estimating
function, use the corresponding option set function:

Model Estimating
Function

Options Set Function Estimated Linear Model
Type

ar arOptions idpoly (AR structure
polynomial)

armax armaxOptions idpoly (ARMAX structure
polynomial)

arx arxOptions idpoly (ARX structure
polynomial)

bj bjOptions idpoly (Box-Jenkins
polynomial)

greyest greyestOptions idgrey
iv4 iv4Options idpoly
n4sid n4sidOptions idss
oe oeOptions idpoly (Output-error

polynomial)
polyest polyestOptions idpoly
procest procestOptions idproc
ssest ssestOptions idss
tfest tfestOptions idtf

For more information regarding these functions, enter doc function_name at the
MATLAB command prompt.

Compatibility Considerations
The option sets replace the Algorithm model property.

R2012a

15-6

The Algorithm property is no longer supported. The fields of Algorithm map to
estimation options as follows:

Algorithm Property Field Options Set Field
LimitError Advanced.ErrorThreshold
Advanced.Threshold.Zstability Advanced.StabilityThreshold.z
Advanced.Threshold.Sstability Advanced.StabilityThreshold.s
Advanced.Threshold.AutoInitThreshold Advanced.AutoInitThreshold
Criterion/Weighting OutputWeight

• If, Algorithm.Criterion was 'det', use
OutputWeight = 'noise'.

• If, Algorithm.Criterion was 'trace',
use OutputWeight =
Algorithm.Weighting.

FixedParameter No replacement. Use the Structure property of
the identified linear model to designate its fixed
parameters.

MaxIter SearchOption.MaxIter
Tolerance SearchOption.Tolerance
MaxSize Advanced.MaxSize
Advanced.Search SearchMethod and SearchOptions. These

fields are available for only iterative estimation
methods, such as tfestOptions.

Model Analysis and Validation Option Sets

You can now use option sets to configure the various attributes of model simulation and
prediction commands. The option sets configure, among other things, how the initial
conditions and data offsets are handled. They replace the property-value pairs used by the
analysis commands as input arguments. To create and configure the option set for an
analysis or validation function, use the corresponding option set creating function:

Analysis/Validation Function Options Set Function
predict predictOptions

15-7

Analysis/Validation Function Options Set Function
compare compareOptions
sim simOptions
simsd simsdOptions
forecast forecastOptions
findstates findstatesOptions
pe peOptions

For more information regarding these functions, enter doc function_name at the
MATLAB command prompt.

Compatibility Considerations
Specifying Initial Conditions and Noise Data To specify the initial conditions and
noise specifications for sim or simsd, use the corresponding option set with the
InitialCondition, AddNoise, and NoiseData options set appropriately. In previous
releases, you could use name and value pair input arguments to specify these options.

Identified Linear Models
Support for Constraining and Fixing Parameters in All Identified Linear Models

You can now specify minimum/maximum bounds for, and fix or free for estimation, any
parameter of an identified linear model. You use the new model property, Structure, to
access a parameter and configure it.

Support for Model Arrays

You can now create arrays of identified linear models to analyze multiple models
simultaneously. You can create an array using array subassignment. For example,
sys(:,:,k) = new sys;.

You can also use the stack function to create an identified linear model array. For more
information, see stack.

You can also use the new function, rsample, to create an array of models that sample an
identified linear model within the uncertainty limits of its parameters. For more
information see rsample.

R2012a

15-8

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/stack.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/rsample.html

Estimation Report

You can use the new Report property of identified linear models for information
regarding the estimation performed to obtain the model.

For more information, see “Reorganization of Estimation Reports” on page 15-19.

Convert Time-Series Model to Input-Output Model for Analysis

Use the new function, noise2meas, to convert a time-series model, which has no
measured inputs, to an input-output model for linear analysis. noise2meas complements
the functionality of noisecnv, which converts an identified model with noise channels to
a model with only measured inputs.

For more information, see noise2meas.

Specify Input/Output Pairs Using Subsystems

You can now specify subsystems as input/output models for all identified linear models,
except idgrey models.

For example, sys(i,j) = sys0;

Group Inputs and Outputs

You can now group inputs and outputs for identified linear models using the InputGroup
and OutputGroup properties, respectively.

For more information regarding specifying input groups, enter help
idlti.InputGroup at the MATLAB command prompt.

For more information regarding specifying output groups, enter help
idlti.OutputGroup at the MATLAB command prompt.

Model Parameter Interaction

New commands for interacting with the parameters of identified linear models include:

• getpvec — Fetch the model parameters.
• setpvec — Set the model parameters.
• getcov — Fetch the parameter covariance matrix.
• setcov — Set the parameter covariance matrix.

15-9

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/noise2meas.html

• nparams — Fetch number of model parameters.

For more information regarding these functions, enter doc function_name at the
MATLAB command prompt.

Random Sampling

The new rsample function creates a set of perturbed systems corresponding to an
identified linear model. Use this random sampling of an identified linear model for Monte-
Carlo analysis.

For more information see rsample.

Compatibility Considerations
The recommended usage and workflow has changed for some model parameters. Where
possible, backward compatibility is maintained in this release. However, adoption of the
recommended changes is strongly encouraged as obsoleted model properties and
workflows may not be supported in the future.

The following table lists affected model properties:

Property Model Types
Affected

What Happens in
R2012a

Use This Instead

ParameterVector idss, idpoly,
idgrey, and idproc

Still available. Use the new function
getpvec to access
model parameters.

The list of
parameters obtained
from
ParameterVector
may differ from the
list of parameters
returned by
getpvec.

R2012a

15-10

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/rsample.html

Property Model Types
Affected

What Happens in
R2012a

Use This Instead

PName idss, idpoly,
idgrey, and idproc

Still available. Each identified linear
model now has a
Structure property,
which consists of the
parameters relevant
to the model. Each of
the parameters has
an Info field, which
may be used to store
information
regarding the
parameter. To store
the parameter name,
use Info.Label.

Algorithm idss, idpoly,
idgrey, and idproc

Still available. See “Estimating
Functions and
Estimation Option
Sets” on page 15-6.

CovarianceMatrix idss, idpoly,
idgrey, and idproc

Still available. Use the new
functions, getcov
and setcov, to
interact with the
covariance matrix of
the model.

Also, after a model,
sys, is estimated,
you may access the
estimated covariance
matrix using
sys.Report.Param
eters.

15-11

Property Model Types
Affected

What Happens in
R2012a

Use This Instead

All identified linear
models.

Backward
incompatibility.
Parameter
covariance is no
longer translated for
the following
operations with
identified linear
models:

• Model
discretization

• Model conversion
• Model

concatenation

N/A

EstimationInfo idss, idpoly,
idgrey, and idproc

Still available. Replaced by the new
model property,
Report.

For more
information, see
“Reorganization of
Estimation Reports”
on page 15-19.

R2012a

15-12

Property Model Types
Affected

What Happens in
R2012a

Use This Instead

InputName,Output
Name

All identified linear
models.

Backward
incompatibility. By
default, the input/
output channel
names are set to ''.
In previous releases,
the default channel
names were set to
{'u1',...} and
{'y1',...} for
input and output
channels,
respectively.
When an identified
linear model is
estimated using an
iddata object, it will
inherit the input/
output channels
names from the
iddata object.

N/A

TimeUnit All identified models. You can now specify
the TimeUnit as
only one of the
supported units.
Supported units
include:
'nanoseconds',
'microseconds',
'milliseconds',
'seconds',
'minutes',
'hours', 'days',
'weeks', 'months',
and 'years'.

N/A

15-13

Property Model Types
Affected

What Happens in
R2012a

Use This Instead

Ts idss and idpoly Backward
incompatibility. For
discrete-time models,
default is Ts = -1,
which indicates an
unspecified sample
time. In previous
releases, the default
value of Ts was 1.

N/A

Noise Channel Treatment When Converting Identified Linear Model to Numeric
LTI Model

Backward incompatibility. You can convert an identified linear model to a numeric LTI
model for use in Control System Toolbox. When you do so, the model returned contains
only the measured components of the original model. In previous releases, the noise
channels of the original model were also returned as extra inputs of the resulting model.

For example, consider the following polynomial model:

sys = idpoly([1 1],[1 2 3],[1 2])

In previous releases, executing sys_tf = tf(sys) returned a transfer function model
with two inputs. The first input corresponded to the measured component, B/A. The
second input corresponded to the noise component, C/A. size(sys,2) is 1 but
size(sys_tf,2) is 2. Thus, sys had one input, while sys_tf had two inputs.

In this release, sys_tf = tf(sys) returns a SISO transfer function with one input. This
input corresponds to the measured component, B/A.sys and sys_tf both have the same
number of inputs.

To obtain the noise input channels in addition to the measured inputs, as in previous
releases, use the string 'augmented' as an additional input.

sys_tf = tf(sys,'augmented');

The inputs of sys_tf are grouped in the InputGroup property. The inputs from the
measured dynamics belong to the Measured input group, and the noise-related inputs
belong to the Noise input group.

R2012a

15-14

To obtain a model containing just the noise component of the original model, use the
string 'noise' as an additional input:

sys_tf = tf(sys,'noise');

Conversion to Identified Linear Model of Numeric LTI Models Ignores Input
Groups

Backward incompatibility. In previous releases, when you converted a numeric LTI
model that had an input group named 'noise' into an identified linear model, the
corresponding inputs were converted to noise channels in the resulting model. This
behavior is no longer supported. You can use the 'split' input argument when you
convert a numeric LTI model to an identified model. Using the 'split' input argument
results in the last Ny inputs being treated as noise channels in the identified model. Here,
Ny is the number of outputs.

For example, in previous releases:

sys = rss(2,2,5);
sys.InputGroup = struct('noise',4:5);
sys_idss = idss(sys);

resulted in sys_idss having the fourth and fifth inputs of sys being treated as noise
channels.

In this release, use:

sys_idss = idss(sys,'split');

As sys has two outputs and five inputs, its last two input channels are converted to noise
channels in sys_idss. sys_idss has three measured input channels.

Input Channel Referencing for Measured Components

You can configure an estimated model to be free of the influence of noise by setting the
NoiseVariance property value to 0. In previous releases, you achieved this result by
subreferencing the inputs of the model using the 'measured' string, as in
sys(:,'measured'). This type of subreferencing is provided in this release for
backward compatibility only and may not be supported in the future.

Input Channel Referencing for Noise Components

You can now extract only the noise components of an identified linear model using the
syntax:

15-15

sys_noise_only = sys(:,[]);

Here, the : indexes all the outputs and [] specifies that none of the measured inputs are
extracted. sys_noise_only has zero measured inputs and is consequently a noise
model.

In previous releases, you achieved this result by subreferencing the inputs of the model
using the 'noise' string, as in sys(:,'noise'). This type of subreferencing is
provided in this release for backward compatibility only and may not be supported in the
future.

Model Precedence Rules

The precedence order among identified linear models is idfrd > idss > idpoly >
idtf > idproc and idss > idgrey.

When you combine a numeric LTI model with an identified model, the resulting model is a
numeric LTI model. Interconnecting and combining identified linear models using
functions such as series, parallel, and feedback, and performing model addition
results in a numeric LTI model. Input-output concatenation and model stacking of
identified models returns an identified model object.

Simultaneous Model-Type Conversion and Property Value Setting

Model conversion functions will not support setting model property values in the future.

Replace calls such as:

sys_idfrd = idfrd(sys,w,'InputName','u1','InputDelay',3);

With:

sys_idfrd = idfrd(sys,w);
set(sys_idfrd,'InputName','u1','InputDelay',3);

Replace inpd2nk with absorbDelay

The inpd2nk is now obsolete. Use absorbDelay instead to absorb all time delays of a
dynamic system model into the system dynamics or the frequency response data. In this
release, calling inpd2nk results in the toolbox making an internal call to absorbDelay.

For more information, see absorbDelay.

R2012a

15-16

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/absorbdelay.html

System Identification Tool GUI
Transfer Function Models

You can now estimate transfer functions using the System Identification Tool GUI.

To open the Transfer Function dialog box:

1 Import a data set into the System Identification Tool GUI.
2 In the Estimate list, select Transfer Function Models.

For more information regarding transfer function estimation, open the Transfer Function
dialog box, and click Help.

Process Models

You can now estimate multi-output process models using the System Identification Tool
GUI.

To open the Process Models dialog box:

1 Import a data set into the System Identification Tool GUI.
2 In the Estimate list, select Process Models.

For more information regarding process model estimation, open the Process Model dialog
box and click Help.

State-Space Models

You can now use the System Identification Tool GUI for these operations:

• Estimate continuous-time state-space models.
• Specify the parameterization form, such as canonical or modal.
• Specify feedthrough, which determines whether the D matrix of the state-space model

is treated as free estimation parameter or fixed to zero.
• Specify input delay.

To open the Polynomial and State Space Models dialog box:

1 Import a data set into the System Identification Tool GUI.
2 In the Estimate list, select State Space Models.

15-17

For more information regarding state-space estimation, open the Polynomial and State
Space Models dialog box and click Help.

Polynomial Models

You can now specify noise integration and input delays when estimating polynomial
models using the System Identification Tool GUI.

You can also estimate multi-output polynomial models by specifying the appropriate
model order.

To open the Polynomial and State Space Models dialog box:

1 Import a data set into the System Identification Tool GUI.
2 In the Estimate list, select Polynomial Models.

For more information regarding polynomial estimation, open the Polynomial and State
Space Models dialog box and click Help.

Compatibility Consideration: You no longer select Linear parameteric models to
open the Polynomial and State Space Models dialog box.

Changes Introduced in This Version
Changes introduced in this version:

• “Reorganization of Estimation Reports” on page 15-19
• “Polynomial Models” on page 15-20
• “State-Space Models” on page 15-25
• “Process Models” on page 15-31
• “Linear Grey-Box Models” on page 15-36
• “Identified Frequency-Response Data Models” on page 15-39
• “Identification Data Objects” on page 15-40
• “Analysis Commands” on page 15-41
• “Other Functionality Being Removed or Changed” on page 15-52

R2012a

15-18

Reorganization of Estimation Reports

A new property of identified linear models, Report, provides information regarding the
performed estimation. This property replaces the EstimationInfo property and
provides additional information regarding:

• All estimated quantities — Parameter values and covariance, initiate state values for
state-space models and values of input levels for process models.

• The option set used for estimation.
• Additional fit criteria — Percentage fit to estimation data and the mean square error.

The Report field is mostly uniform for the various identified linear models. However,
certain fields of Report are model dependent.

To access the Report property of an identified linear model, sys, use sys.Report.

Compatibility Considerations
Report replaces the EstimationInfo property. The fields of EstimationInfo map to
those of Report as:

EstimationInfo Field Report Field
LossFcn Fit.LossFcn
FPE Fit.FPE
DataName DataUsed.Name
DataLength DataUsed.Length
DataTs DataUsed.Ts
DataDomain DataUsed.Type
DataInterSample DataUsed.InterSample
WhyStop Termination.WhyStop

Termination information is not provided for
models estimated using a noniterative estimation
function, such as arx or n4sid.

15-19

EstimationInfo Field Report Field
UpdateNorm Termination.UpdateNorm

Termination information is not provided for
models estimated using a noniterative estimation
function, such as arx or n4sid.

LastImprovement Termination.LastImprovement

Termination information is not provided for
models estimated using a noniterative estimation
function, such as arx or n4sid.

Iterations Termination.Iterations

Termination information is not provided for
models estimated using a non-iterative
estimation function, such as arx or n4sid.

InitialState Either:

• InitialState (state-space models)
• InitialCondition (other identified linear

models)
Warning No replacement.

Polynomial Models
Polynomial Model Estimators

Use the new function, polyest, to estimate a polynomial model containing an arbitrary
subset of A, B, C, D, and F polynomials.

For more information, see polyest and polyestOptions.

Also, the functions ar, arx, bj, oe, and armax now support multi-output polynomial
estimation.
Integration on Noise Models (ARIMA models)

You can now introduce integrators in the dynamics of the disturbances added to the
output of the model.

For more information, see “Generating ARIMA Models” on page 15-4.

R2012a

15-20

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/polyest.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/polyestoptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/ar.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/arx.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/bj.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/oe.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/armax.html

idarx Models No Longer Returned in Multi-Output Model Estimation

idarx models are no longer returned when you use estimating functions for multi-output
ARX models. Support for idarx models may not be provided in the future. Use idpoly
models to estimate and represent multi-output ARX models instead.

Compatibility Consideration: Backward incompatibility. arx, iv4, and ivx now
return idpoly models for multi-output estimation. In previous releases, they returned
idarx models.

To convert an existing idarx model, sys_idarx, to an idpoly model, use
idpoly(sys_idarx).

Similarly, to convert an existing idpoly model, sys_idpoly, to an idarx model, use
idarx(sys_idpoly).
Specify Transport Delays

Use the new idpoly property, ioDelay to specify the transport delays for individual
input/output pairs.

You can use ioDelay as an alternative to the nk order when estimating polynomial
models. Using ioDelay reduces the complexity of the model by factoring out the leading
zeros of the B polynomials, controlled by nk.

For example:

load iddata1 z1
load iddata2 z2
data = [z1 z2(1:300)];
na = [2 3; 1 2];
nb = [1 2; 2 2];
nk = [2 1; 7 0];
sys1 = arx(data,[na nb nk]);
sys2 = arx(data,[na nb zeros(2)],'ioDelay',nk);

In this case, sys1 and sys2 are equivalent, but sys2.b shows fewer terms in each B
polynomial than sys1.b.

For more information, see idpoly.
Specify Display Variable

You can now specify the variable used to display model equations for idpoly models. Use
the new model property, Variable. For continuous-time models, specify either 's' or

15-21

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idpoly.html

'p' as the variable. For discrete-time models, use either 'z^-1' or 'q^-1' as the lag
variable.

For more information, see idpoly.

Multi-Output Weighting Using arx

For estimating multi-output ARX models, use the OutputWeight estimation option to
specify the output weighting. You create the option set for ARX model estimation using
arxOptions. In previous releases, to do so you specified a NoiseVariance name-value
pair input for arx.

arx uses the following syntaxes for assigning output weight:

Syntax Output Weight Value
arx(data,[na,bk,nk]) eye(Ny), where Ny is the number of

outputs
arx(data,[na nb nk],opt), where opt
is an option set created using arxOptions

opt.OutputWeight

If opt.OutputWeight = [], then
eye(Ny).

arx(data,init_model), where
init_model is an estimation initialization
model

init_model.NoiseVariance

arx(data,init_model,opt) opt.OutputWeight

If opt.OutputWeight = [], then
init_model.NoiseVariance.

Polynomial Structure

The new Structure property of idpoly models stores the adjustable parameters, which
include:

• The active polynomials

For example, consider the ARX model:

A = [1 2 1];
B = [0 3 4];
sys = idpoly(A,B);

R2012a

15-22

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idpoly.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/arxoptions.html

sys.Structure lists the polynomials A and B as parameters. You can specify nominal
values and constraints for these parameters.

sys.Structure does not list the C, D, and F polynomials.
• The transport delays and integrate noise flag

You can set these delays and the flag for models of any polynomial configuration.

You interact with the Structure property to specify constraints (such as maximum/
minimum bounds) for the various parameters. To change only the values of the
polynomials or the transport delays, use the relevant idpoly model property, viz a, b, c,
d, f, ioDelay, and IntegrateNoise.

For more information, see idpoly.

Compatibility Considerations
The recommended usage and workflow has changed for some model parameters and
functionality. Where possible, backward compatibility is maintained in this release.
However, adoption of the recommended changes is strongly encouraged as obsoleted
model properties and workflow may not be supported in the future.

The following table lists affected functionality:

Functionality What Happens in R2012a Use This Instead
Model properties that store the
polynomial order — na, nb, nc,
nd, nf, and nk

You may still modify the value of
these properties as long as their
sizes are compatibility with the
input/output sizes.

The estimation commands for
polynomial models will continue
to support the specification of
“in-model” delays using nk.

Use idpoly to create a new
model of desired orders.

Use ioDelay and InputDelay
to specify delays separate from
the B polynomial.

Model properties that store
standard deviation information
— da, db, dc, dd, and df

You may still access these model
properties using dot notation.
For example, sys.da.

Use the functions getpvec and
polydata to access parameters
and their standard deviations.

15-23

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idpoly.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/getpvec.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/polydata.html

Functionality What Happens in R2012a Use This Instead
Treatment of the leading zeros
of the B polynomials

If you have a discrete-time
idpoly model that has nk
leading zeros, then nk-1 of
them are treated as delays.
When you convert such a model
into another linear model, these
delays are set to the appropriate
delay related property.

For example,

sys = idpoly([1 2],...
[0 0 0 4]);
% nk = 3
sys2 = tf(sys);

The ioDelay property of sys2
is 2, and the numerator is {[0
4]}.

N/A

Model property —
InitialState

Still works. Use the option,
InitialCondition, when
creating the relevant option set
for estimation, prediction,
simulation, and comparison.

Storage of the B and F
polynomials

For multi-input models, the b
and f properties are no longer
saved as a matrix of doubles.
These properties will now be
saved using cell arrays.

To continue storing these
properties as a matrix of
doubles, use setPolyFormat

N/A

R2012a

15-24

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/setpolyformat.html

Functionality What Happens in R2012a Use This Instead
Treatment of the trailing zeros
of the B and F polynomials

Trailing zeros in the B and F
polynomials of a discrete-time
idpoly model are not
discarded.

For example, in previous
releases:

sys = idpoly([1 2],...
[2 4 0 0 0]);

resulted in [2 4] as the B
polynomial for sys.

Now, the same code gives [2 4
0 0 0] as the B polynomial for
sys.
Similar considerations apply to
leading zeros of B, F
polynomials of a continuous-
time model.

N/A

State-Space Models

State-Space Model Estimator

The new function, ssest, can be used to estimate a discrete-time or continuous-time
identified state-space model. You can use time-domain or frequency-domain data with
ssest and perform both structured and unstructured model estimation. You can also
choose a canonical form of the identified state-space model.

To configure the handling of initial conditions and other initialization choices, data offsets
and search algorithm, use the associated option command, ssestOptions.

For more information, see ssest and ssestOptions.

For a structured state-space model, which is an idss model with finite parameters, you
can use either pem or ssest to update the values of those parameters for measured
input-output data.

15-25

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/ssest.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/ssestoptions.html

n4sid Supports Canonical Forms

The subspace estimator function, n4sid, now supports new parameterization options,
such as modal and companion canonical forms and the presence of feedthrough.

To configure the handling of initial conditions and other initialization choices and data
offsets, use the associated option command, n4sidOptions.

For more information, see n4sid and n4sidOptions.

State-Space Structure

The new Structure property of idss models stores the adjustable parameters, which
include the a, b, c, d and k matrices.

You interact with the Structure property to specify constraints (such as maximum/
minimum bounds) for the various parameters. To only change the values of the matrices,
use the relevant idss model property, viz a, b, c, d, and k.

For more information, see idss.

Compatibility Considerations
The recommended usage and workflow has changed for some model parameters. Where
possible, backward compatibility is maintained in this release. However, adoption of the
recommended changes is strongly encouraged as obsoleted model properties and
workflow may not be supported in the future.

The following table lists affected model properties:

R2012a

15-26

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/n4sid.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/n4sid.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/n4sidoptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idss.html

Model Property What Happens in R2012a Use This Instead
X0, InitialState Still available. Use the InitialState option

for estimation and the
InitialCondition option for
prediction, simulation, and
comparison.

For example, replace:

sys = n4sid(data,2,...
'InitialState','estimate');

with:

opt = n4sidOptions(...
'InitialState','estimate');
sys = n4sid(data,2,opt);

As, Bs, Cs, Ds, Ks, and X0s Still available. Use the Structure property to
specify constraints (such as
maximum/minimum bounds) for
A, B, C, D, and K. Use the
InitialState estimation
option to specify constraints on
the initial state vector.

For example, instead of:

sys = idss(A,B,C,D,K);
sys.X0s = [nan;1]
syse = pem(data, sys);

Use:

opt = ssestOptions;
X0 = idpar([nan; 1]);
X0.Free(2) = false;
opt.InitialState = X0;
sys = idss(A,B,C,D,K);
syse = ssest(data, sys, opt);

15-27

Model Property What Happens in R2012a Use This Instead
da, db, dc, dd, and dk Still available. Use the new function idssdata

to obtain the state-space matrix
standard deviations.

R2012a

15-28

Model Property What Happens in R2012a Use This Instead
nk Still available but may cause a

backward incompatibility.

If you previously specified both
nk and InputDelay, you could
see different results in this
release.
For example,

load iddata1 z1;
sys = pem(z1,4,...
'nk',5,'InputDelay,2);

In this release, sys.nk is 3,
whereas sys.nk was 5 in
earlier releases.

For estimation, use the
InputDelay and Feedthrough
estimation properties instead.
When creating an idss model,
specify the InputDelay and
Structure.d properties.

nk, InputDelay, and
Feedthrough are related:

• nk(j) = 0 means that the
model has no delay for the jth
input. Therefore,
InputDelay is 0, and
Structure.d.Free(:,j)
is true.

• nk(j) = 1 means that the
model has zero delay for the
jth input. Therefore,
InputDelay is 0, and there
is no feedthrough.
Structure.d.Free(:,j)
is false, and
Structure.d.Value(:,j)
is zero.

• nk(j) = N, N>1 means
that the model has nonzero
delay for the jth input.
Therefore, InputDelay is
N-1, and there is no
feedthrough.
Structure.d.Free(:,j)
is false, and
Structure.d.Value(:,j)
is 0.

nk > 1 can only be used for
a discrete-time model.

15-29

Model Property What Happens in R2012a Use This Instead
SSParameterization Still available.

However, when you use get to
obtain the value of
SSParameterization, the
software may report a canonical
form as the structured form.

• Use the 'form'/value
name-value pair when
estimating using either
n4sid or ssest to specify
the form of the estimated
model.

• To change the structure of
an existing model, use one of
these methods:

• Change each matrix
individually using the
Structure property.

• Use canon to specify a
canonical form.

• Use ss2ss and specify a
transformation matrix.

Note Parameter covariance
is not translated in these
operations.

R2012a

15-30

Model Property What Happens in R2012a Use This Instead
DisturbanceModel Still available. For estimation, specify

DisturbanceModel as an
option for estimation.

For changing the model
structure, for its disturbance
component, use
Structure.k.Value and
Structure.k.Free instead.
For example,
DisturbanceModel =
'none' corresponds to setting
model.Structure.k.Value
to zeros and
model.Structure.k.Free to
false.

CanonicalIndices Still available if the model is in
canonical form.

Use canon and ss2ss to
change the state-space form.

Process Models
Process Model Estimator

The new function, procest, lets you estimate process models using time-domain or
frequency-domain data. You can also specify the handling of input offsets and
disturbances using an option set for this function using procestOptions.

For more information, see procest and procestOptions.
Multi-Output Support

You can now create and estimate multi-output process models.

For more information, see “Multi-Output Process Models” on page 15-4
Noise Transfer Function

Use the new property NoiseTF of idproc models to specify the value of the noise
transfer function in numerical form. NoiseTF is a structure with the fields num
(numerator) and den (denominator) representing the noise-transfer function. This
property replaces the DisturbanceModel property.

15-31

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/procest.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/procestoptions.html

Input Delay

The InputDelay property of idproc model represents input delays and is now
independent of the Td property.

The Td property represents the transport delay, which is thus similar to the ioDelay
property of idpoly and idtf models.

For more information, see idproc.

Process Model Structure

The Structure property of idproc models houses active parameters. These parameters
are a subset of Kp, Tp1, Tp2, Tp3, Tw, Zeta, Td, and Tz, depending on the Type option
used to create the model. Structure also contains the Integration property whose
value determines if the model structure contains an integrator.

You use the Structure property to specify constraints (such as maximum/minimum
bounds) for the various active parameters.

Structure is an Ny-by-Nu array, where Ny is the number of outputs and Nu is the number
of inputs. The array specifies a transfer function for each input/output pair.

For example:

sys = idproc({'p2u' 'p0' 'p3zi'; 'p1' 'p2d' 'p2uz'});

In this case, sys.Structure is a 2-by-3 array. sys.Structure(1,1).Zeta is a
parameter, while sys.Structure(1,2) does not have a Zeta field, as this parameter is
inactive for the (1,2) output-input pair.

To change the list of active parameters, you must create a new model. However, you may
change the Integration property at any time.

Lower Bound on Time Constants

The minimum value permitted for the time constants of an idproc model, Tp1, Tp2, Tp3,
Tw, and Zeta is now 0. In previous releases, you could not specify for these constraints a
value smaller than 0.001. For well-conditioned estimations, it is still recommended that
you specify reasonable upper and lower bounds around the time-constant values.

R2012a

15-32

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idproc.html

Compatibility Considerations
The recommended usage and workflow has changed for some model parameters. Where
possible, backward compatibility is maintained in this release. However, adoption of the
recommended changes is strongly encouraged as obsoleted model properties and
workflow may not be supported in the future.

The following table lists affected model properties:

Model Property What Happens in R2012a Use This Instead
InputLevel Still available. Use the InputOffset option

for estimation using
procestOptions. For
advanced control, you can
specify the InputOffset
option as 'estimate' or a
param.Continuous object.

InitialState Still available. Use the InitialCondition
option for estimation,
prediction, simulation and
comparison.

For example, replace:

sys = pem(data,'p1d',...
'InitialState','estimate');

with:

opt = procestOptions(...
'InitialCondition','estimate');
sys = procest(data,...
'p1d',opt);

15-33

Model Property What Happens in R2012a Use This Instead
DisturbanceModel Still available. The DisturbanceModel

property of idproc models in
previous releases represented
both the estimation flag and as
the actual value of the noise
transfer function. The
DisturbanceModel property
has now been replaced by:

• The NoiseTF property,
which represents the value
of the noise transfer
function.

• The DisturbanceModel
estimation option, which is
contained in the
procestOptions option
set. This option stores the
flag, which determines how
the noise transfer function is
estimated.

For example, replace:

load iddata1 z1;
sys = pem(z1,'p1d',...
 'DisturbanceModel','arma1');
NoiseTF = sys.DisturbaceModel{2};

with:

load iddata1 z1;
opt = procestOptions(...
 'DisturbanceModel','arma1');
sys = pem(z1,'p1d',opt);
NoiseTF = sys.NoiseTF;

For more information, see
procestOptions.

R2012a

15-34

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/procestoptions.html

Model Property What Happens in R2012a Use This Instead
X0 Still available. There is no replacement for this

model property as idproc is
not a state-space model.
Continuing to use X0 may
produce bad results.

Kp, Tp1, Tp2, Tp3, Tw, Zeta,
Td, and Tz

Backward incompatibility.

These properties are now saved
as double matrices. In previous
releases, they were stored as
structures.

Assigning the value of these
parameters to structures will
continue to work:

model = idproc('p1','Tp1',1,'Kp',2)
model.Tp1.value = 5;

In previous releases, you could
obtain the value of a parameter
as a structure and access its
fields. Now, you will receive an
error.

model = idproc('p1','Tp1',1,'Kp',2)
Tp1 = model.Tp1;
Tp1.status % throws error

However, subreferencing for a
field of the old parameter
structure will continue to work:

model = idproc('p1','Tp1',1,'Kp',2)
model.Tp1.status
% returns {'estimate'}

Use the Structure property to
specify parameter constraints.

Structure replaces the
specification of process model
parameter bounds. See Call
Replacements.

15-35

Call Replacements

Replace a Call Like... With...
model.Tp1.status = {'estimate'} model.Structure.Tp1.Free = true;
model.Tp1.status = {'zero'} model.Structure.Tp1.Free = false;

model.Structure.Tp1.Value = 0;

model.Tp1.status ={ 'fixed'} model.Structure.Tp1.Free = false;
model.Tp1.min = value model.Structure.Tp1.Minimum =

value
model.Tp1.max = value model.Structure.Tp1.Maximum =

value
model.Tp1.value = value model.Structure.Tp1.Value = value
For multi-input models:
model.Tp1.status{2} = 'estimate'

model.Structure(1,2).Tp1.Free =
true;

For multi-input models:
model.Tp1.value(2)= value

model.Structure(1,2).Tp1.Value =
value

Linear Grey-Box Models
Linear Grey-Box Model Estimator

The new function greyest lets you estimate the parameters of a linear grey-box model.
You can specify an option set for the estimation by using the function, greyestOptions.

For more information, see greyest and greyestOptions.

Complex Parameters Support

You can now parameterize a real system using complex-conjugate pairs of parameters in
an idgrey model.

When the parameters of such a system are estimated, they continue to be complex
conjugates. Thus, symmetry is maintained across the real axis.

For more information, see the related example in the greyest reference page.

ODE file API

You can now specify an arbitrary number of parameters as independent input arguments
to the ODE file. In previous releases, the parameters of the model had to be consolidated

R2012a

15-36

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/greyest.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/greyestoptions.html

into a single vector that was then passed as the first input argument of the ODE file. Now,
you can pass independent parameters as separate input arguments. The same holds true
for the optional input arguments.

Old syntax:

ODEFUN(ParameterVector, Ts, OptionalArg)

New syntax:

ODEFUN(Par1, Par2, …, ParN, Ts, OptArg1, OptArg2, …)

If all the model parameters are scalars, you can still combine them into a single vector
and pass them as a single input argument to the ODE file.

Also, specifying the value for the output arguments K and X0 is now optional. In earlier
releases, you were required to set a value for K and X0 even if you did not want to
parameterize them. Now, you can omit them entirely from the output argument list. For
more information, see idgrey.

Linear Grey-Box Model Structure

The Structure property of the idgrey model stores information on the ODE function
and its parameters. Structure contains the following properties:

Property Role
FcnType The sample time handling behavior of the

linear ODE model. FcnType specifies
whether the ODE file returns state-space
data that corresponds to one of the
following:

• 'c' — A continuous-time model.
• 'd' — A discrete-time model.
• 'cd' — A continuous-time model if the

sample time is 0 and a discrete-time
model if the sample time greater than 0.

Compatibility Consideration: Use instead
of the CDmfile property.

15-37

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idgrey.html

Property Role
Function Name or function handle to the MATLAB

function that parameterizes the state-space
structure.

Compatibility Consideration: Use instead
of the MfileName property.

Parameters Vector of parameter objects, with an entry
for each model parameter. Use the
parameter object to specify initial values
and minimum/maximum constraints. You
can also indicate whether the parameter is
a free- or fixed- estimation parameter.

ExtraArgs Option input arguments used by the ODE
file to compute the state-space data.

Compatibility Consideration: Use instead
of the FileArgument property.

StateName Model state names.
StateUnit Model state units.

Compatibility Considerations
The recommended usage and workflow has changed for some model parameters. Where
possible, backward compatibility is maintained in this release. However, adoption of the
recommended changes is strongly encouraged as obsoleted model properties and
workflow may not be supported in the future.

The following table lists affected model properties:

Model Property What Happens in R2012a Use This Instead
MfileName Still available. Use the

Structure.Function
property to specify the ODE
function name or function
handle instead.

R2012a

15-38

Model Property What Happens in R2012a Use This Instead
X0 Still available. Use the InitialState

option when you create an
estimation option set using
greyestOptions.

dA, dB, dC, dD, dK and dX0 Still available. Use the functions getpvec
and idssdata to access
parameters and their
standard deviations.

FileArgument Still available. Use the
Structure.ExtraArgs
property to specify the
additional ODE function
arguments.

CDmfile Still available. Use the
Structure.FcnType
property to specify sample
time handling behavior.

InitialState Still available. Use the InitialState
option for estimation and
the InitialCondition
option for prediction,
simulation and comparison.

DisturbanceModel Still available. Use the
DisturbanceModel
estimation option in the
option set created using
greyestOptions.

Identified Frequency-Response Data Models

Specify InterSample Behavior of Inputs

You can use the new InterSample property of idfrd models to specify the behavior of
the input signals between samples for model transformations between discrete-time and
continuous-time. This property is relevant only for discrete-time idfrd models.

For more information, see the InterSample property information in idfrd.

15-39

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idfrd.html

Frequency Unit

Use the new property FrequencyUnit of idfrd models to specify the units for
frequency-domain data.

For a list of the supported units for FrequencyUnit, see idfrd.

Compatibility Consideration: The FrequencyUnit property replaces the Unit
property.

Compatibility Considerations
Input Delay Treatment (Backward incompatibility.) When you convert an identified
model into an idfrd model, its InputDelay and ioDelay properties are translated into
the corresponding properties of the idfrd model. In previous releases, the delays were
absorbed into the ResponseData property as additional phase lag.

The OutputDelay property of an identified model is converted to the ioDelay property
of an idfrd model.

Identification Data Objects
Frequency-Domain Data Units

Use the new property FrequencyUnit of iddata objects to specify the units for
frequency-domain data.

For a list of the supported units for FrequencyUnit, see iddata.

Compatibility Consideration: The FrequencyUnit property replaces the Unit
property.

Impulse and Step Response Plots

Plot the impulse or step response for iddata objects by estimating a discrete-time
transfer function model using impulseest. Use the resulting model as the input
argument for impulse or step.

In the previous release, you could plot the step response without first estimating a
discrete-time transfer function model:

load iddata1 z1;
step(z1);

R2012a

15-40

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idfrd.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/iddata.html

where z1 is an iddata object.

Now, you must use impulseest to estimate a discrete-time transfer function. Then, plot
the appropriate response for the model. For example:

load iddata1 z1;
sys = impulseest(z1);
step(sys);

For more information, see impulseest.

Compatibility Consideration: Backward incompatibility. To see the step or impulse
response for negative time values, use the noncausal input argument with impulseest.
In previous releases, you could call impulse(data) to do this.

Compatibility Considerations
Supported Units for TimeUnit Property You can now specify the TimeUnit property
of an iddata object as only one of the supported units. Supported units include:
'nanoseconds', 'microseconds', 'milliseconds', 'seconds', 'minutes',
'hours', 'days', 'weeks', 'months', and 'years'.

Analysis Commands

Function What Has Changed in R2012a
predict • predict now returns a data object of the

same type as the input data.
• You can now specify an infinite prediction

horizon with time-series models. When you
specify the prediction horizon as Inf,
predict returns the initial condition
response of the model.

• Compatibility Consideration: For a multi-
output system, the predictor model is now
returned as a dynamic system. In previous
releases it was returned as a cell array.

15-41

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/impulseest.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/predict.html

Function What Has Changed in R2012a
compare • When using FRD validation data, compare

plots the magnitude and phase response. The
fit percentage shown corresponds to the
closeness of the complex frequency response
of the system to that of the data (using
normalized root mean square, NRMSE).

• For complex-valued validation data or model,
compare plots the real and imaginary parts
on separate axes.

• You can now use compare to compare data
sets. The data sets may be either iddata or
frd objects.

• You can interactively change the prediction
horizon for time-domain comparison plots.
You can also interactively change the initial
conditions. Right-click on the plot to select
the appropriate option.

• You can now compare arrays of systems to a
validation data set.

• You can now specify the initial conditions and
sample range for comparison using the option
set created by the new function
compareOptions. For more information, see
compareOptions.

• Compatibility Consideration: Backward
incompatibility. The format of the outputs
has changed when you call compare using
the syntax:

 [yh,fit,x0] = compare(data,...
 sys1,...,sysn,m,options)

For example, fit is a cell array rather than a
3-d numeric array when comparing responses
of multiple systems or when using multi-
experiment validation data.

R2012a

15-42

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/compare.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/compareoptions.html

Function What Has Changed in R2012a
step • You can specify an option set for the

generated plot using the function
stepDataOptions.

• You can customize a step plot by creating a
plot using stepplot. Then, to display
confidence intervals on the plot
programmatically, use showConfidence.

• Compatibility Considerations:

• Specify the number of standard deviations
for the confidence region using the new
ConfidenceRegionNumberSD option in
the corresponding option set. In previous
releases, you used the 'sd'/N name-value
pair to specify the number of standard
deviations.

• Backward incompatibility. Using a 2-
element double vector to indicate the plot
time range is no longer supported. You
can only specify a scalar, the final time, or
a vector containing the time instants to be
plotted.

• Backward incompatibility. The third
output argument now returns the state
trajectory. In previous releases, the third
output argument was the response
standard deviation, which is now returned
as the fourth output argument.

15-43

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/step.html
https://www.mathworks.com/help/releases/R2012b/ident/ref/stepdataoptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/stepplot.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/showconfidence.html

Function What Has Changed in R2012a
impulse • You can specify an option set for the

generated plot using the function,
timeoptions. For more information, see
timeoptions.

• You can customize an impulse plot by
creating a plot using impulseplot. Then, to
display confidence intervals on the plot
programmatically, use showConfidence.

• Compatibility Considerations:

• Specify the number of standard deviations
for the confidence region using the new
ConfidenceRegionNumberSD option in
the corresponding option set. In previous
releases, you used the 'sd'/N name-value
pair to specify the number of standard
deviations.

• Backward incompatibility. Using a 2-
element double vector to indicate the plot
time range is no longer supported. You
can only specify a scalar, the final time, or
a vector containing the time instants to be
plotted.

• Backward incompatibility. The third
output argument now returns the state
trajectory. In previous releases, the third
output argument was the response
standard deviation, which is now returned
as the fourth output argument.

R2012a

15-44

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/impulse.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/timeoptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/impulseplot.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/showconfidence.html

Function What Has Changed in R2012a
bode • To customize a bode plot, use bodeplot. You

can specify an option set for the generated
plot using the function bodeoptions. For
more information, see bodeplot and
bodeoptions.

To display confidence intervals on a bode plot
programmatically, use showConfidence.

• Compatibility Considerations:

• Specify the number of standard deviations
for the confidence region using the new
ConfidenceRegionNumberSD option in
the corresponding option set. In previous
releases, you used the 'sd'/N name-value
pair to specify the number of standard
deviations.

• The plot input arguments
'fill','mode', and 'AP' are no longer
supported. Use the plot options,
bodeoptions,getoptions and
setoptions, instead. Alternatively, you
may interactively change these options by
right-clicking on the plot and choosing the
appropriate options.

• Backward incompatibility. You can no
longer specify the frequency range using
w = {wmin, wmax,np}. Instead, use
logspace(wmin,wmax,np).

• Do not use bode for plotting time-series
models. Instead, use the new function
spectrum. For more information, see
spectrum.

15-45

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/bode.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/bodeplot.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/bodeoptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/showconfidence.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/bodeoptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/getoptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/setoptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/spectrum.html

Function What Has Changed in R2012a
pzmap Compatibility Considerations:

• Backward incompatibility. For multi-input,
multi-output systems, pzmap now shows the
system poles and transmission zeros. In
previous releases, pzmap showed the poles
and zeros of individual input/output pairs.

To plot the poles and zeros for individual
input/output pairs, use iopzmap and
iopzplot. For more information, enter help
function_name at the MATLAB command
prompt.

• The 'sd/N' name-value input argument for
displaying the pole-zero confidence regions is
no longer supported. Instead, use iopzmap
and its corresponding options set
(pzoptions). Use the
ConfidenceRegionNumberSD option to
specify the standard deviations for the
confidence regions. You can also use the
showConfidence command to view the
confidence regions programmatically.

R2012a

15-46

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/pzmap.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/showconfidence.html

Function What Has Changed in R2012a
nyquist • You can customize a nyquist plot by creating

the plot using nyquistplot. Then, to display
confidence intervals on the plot
programmatically, use showConfidence.

• Compatibility Considerations:

• The 'sd/N' name-value input argument
for displaying the confidence ellipses is no
longer supported. Create an option set
using nyquistoptions. Use the
ConfidenceRegionNumberSD option to
specify the standard deviations for the
confidence ellipses. Use the
ConfidenceRegionDisplaySpacing
option to specify the spacing of the
confidence ellipses. For more information,
see nyquistoptions.

• Backward incompatibility. You can no
longer obtain the complex frequency
response and its uncertainty as the
outputs of nyquist. Instead, use
freqresp to obtain these values.

nyquist now returns the real and
imaginary parts of the frequency response
and their individual uncertainties. For
more information, see nyquist.

• Backward incompatibility. You can no
longer specify the frequency range using
w = {wmin, wmax,np}. Instead, use
logspace(wmin,wmax,np).

• The plot input name-value
pair'mode'/'same'is no longer
supported. Use the plot options instead
(see nyquistoptions,getoptions and
setoptions). Alternatively, you may
interactively change these options by

15-47

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/nyquist.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/nyquistplot.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/showconfidence.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/nyquistoptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/nyquist.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/nyquistoptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/getoptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/setoptions.html

Function What Has Changed in R2012a
right-clicking on the plot and choosing the
appropriate options.

c2d • You can now use the conversion methods
'tustin', 'matched' and 'impulse'
without requiring the Control System Toolbox
software.

• You can specify the conversion method and
associated option for c2d using c2dOptions.
For more information, see c2dOptions.

• Compatibility Considerations:

• Parameter covariance translation is no
longer supported by c2d. Therefore, the
'CovarianceMatrix'-'none' name-
value pair is no longer supported.

• Backward incompatibility. Grey-box
models of FcnType'c' cannot be
discretized directly. Instead, convert such
models to idss models before using c2d.

• Backward incompatibility. Process
models cannot be discretized directly. You
must first convert your process model to
an idpoly model or an idtf model and
then discretize the new model.

R2012a

15-48

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/c2d.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/c2doptions.html

Function What Has Changed in R2012a
d2c • You can now use the conversion methods

'tustin' and 'matched' without requiring
the Control System Toolbox software.

• You can specify the conversion method and
associated option for d2c using d2cOptions.
For more information, see d2cOptions.

• Compatibility Consideration:

• Parameter covariance translation is no
longer supported by d2c. Therefore, the
'CovarianceMatrix'-'none' name-
value pair is no longer supported.

• Backward incompatibility.

Grey box models of FcnType'd' cannot
be converted into continuous-time models
directly. Instead, convert such models to
idss models before using d2c.

• The input name-value pair
'InputDelay'/0 are no longer
supported. Input delays are now handled
uniformly, as described in Continuous-
Discrete Conversion Methods.

15-49

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/d2c.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/d2coptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bs08hih.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bs08hih.html

Function What Has Changed in R2012a
ssdata • Use the new function idssdata to fetch

state-space matrices for identified linear
models. If idssdata is used for a model
other than idss or idgrey, it returns empty
matrices for uncertainty outputs.

For more information, see idssdata.
• You can still call the ssdata command with

six or more output arguments to fetch the
state-space matrices and related uncertainty
information. However, this syntax of ssdata
may be removed in the future and it is
recommended to use idssdata instead.

• Compatibility Consideration:Backward
incompatibility. ssdata now returns the
sampling time, Ts, as the fifth output when it
is called with five outputs. In previous
releases, ssdata returned the disturbance
matrix, K, as the fifth output.

tfdata Compatibility Consideration: Backward
incompatibility. tfdata now returns the
sampling time, Ts, as the third output. In
previous releases, tfdata returned the
numerator standard deviation as the third
output.

The new syntax is:

[num,den,Ts,sdnum,sdden] = tfdata(sys);

sdnum and sdden are [] if sys does not contain
uncertainty information or for multi-output
polynomial models with a nondiagonal A
polynomial array.

R2012a

15-50

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/ssdata.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idssdata.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/tfdata.html

Function What Has Changed in R2012a
zpkdata Compatibility Consideration: Backward

incompatibility. zpkdata now returns the
sampling time, Ts, as its fourth output argument.
In previous releases, zpkdata returned the
standard deviations of the zeros.

The new syntax is:

[z,p,k,z,Ts,covz,covp,covk] = zpkdata(sys)

where covz, covp and covk are the covariance
of the zeros, poles and gain of sys.

canon You can use the new function canon to
transform idss models into various canonical
forms.

For more information, see canon.
findstates(idParametric) You can now specify arbitrary prediction

horizons for findstates.

You can use an option set to specify the option
for findstates.
Use the new function findstatesOptions to
create the option set.

For more information, see
findstatesOptions.

ffplot ffplot is no longer supported. Use bodeplot
instead. Use bodeoptions to set the frequency
units and scale.

setstruc setstruct is no longer supported. Use the
Structure property of the idss model to
configure the model parameters.

setpname setpname is no longer supported. Use the
Info.Label field of the Structure property
associated with the model parameter.

15-51

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/zpkdata.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/canon.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/canon.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/findstatesidparametric.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/findstatesoptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/ffplot.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/bodeplot.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/bodeoptions.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/setstruc.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/setpname.html

Function What Has Changed in R2012a
idprops idprops is no longer supported. For information

regarding a model, enter doc model_name.
idhelp idhelp is no longer supported. For information

regarding a model or function, enter doc
model_or_function_name.

Other Functionality Being Removed or Changed

Functionality What Happens When
You Use This
Functionality?

Use This Instead Compatibility
Considerations

sys.LinearModel, for
idnlhw model, sys

Returns an idpoly
model.

N/A The LinearModel
property of idnlhw
models is no longer
returned as a state-
space model for multi-
output models. Instead,
idnlhw returns an
idpoly model.

R2012a

15-52

R2011b

Version: 7.4.3

Bug Fixes

16

R2011a

Version: 7.4.2

Bug Fixes

17

R2010b

Version: 7.4.1

No New Features or Changes

18

R2010a

Version: 7.4

New Features

Compatibility Considerations

19

New Ability to Use Discrete-Time Linear Models for Nonlinear
Black-Box Estimation
You can now use the following discrete-time linear models for initializing a nonlinear
black-box estimation.

Discrete-time Linear Model Use for Initializing...
Single-output polynomial model of ARX
structure (idpoly)

Single-output nonlinear ARX model
estimation

Multi-output polynomial model of ARX
structure (idarx)

Multi-output nonlinear ARX model
estimation

Single-output polynomial model of Output-
Error (OE) structure (idpoly) or state-
space model with no disturbance
component (idss) object with K = 0

Single-output Hammerstein-Wiener model
estimation

State-space model with no disturbance
component (idss object with K = 0)

Multi-output Hammerstein-Wiener model
estimation

During estimation, the software uses the linear model orders and delay as initial values of
the nonlinear model orders and delay. For nonlinear ARX models, this initialization always
provides a better fit to the estimation data than the linear ARX model.

You can use a linear model as an alternative approach to using model orders and delay for
nonlinear estimation of the same system.

You can estimate or construct the linear model and then use this model for constructing
(see idnlarx and idnlhw) or estimating (see nlarx or nlhw) the nonlinear model. For
more information, see Using Linear Model for Nonlinear ARX Estimation, and Using
Linear Model for Hammerstein-Wiener Estimation in the System Identification Toolbox
User's Guide.

New Cell Array Support for B and F Polynomials of Multi-Input
Polynomial Models
You can now use cell arrays to specify the B and F polynomials of multi-input polynomial
models. The B and F polynomials are represented by the b and f properties of an idpoly
object These properties are currently double matrices.

R2010a

19-2

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idpoly.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idarx.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idss.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlarx.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlhw.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/nlarx.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/nlhw.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq5o_xw-1.html#bsgkhug
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq2ix15.html#bsgkiwq
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq2ix15.html#bsgkiwq
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idpoly.html

For multi-input polynomial models, these polynomials will be represented by cell arrays
only in a future version. If your code performs operations on the b and f properties, make
one of the following changes in the code:

• When you construct the model using the idpoly command, use cell arrays to specify
the B and F polynomials. Using cell arrays causes the b and f properties to be
represented by cell arrays.

• After you construct or estimate the model, use the new setPolyFormat command to:

• Convert b and f properties to cell arrays.
• Make the model backward compatible to continue using double matrices for b and

f properties. This operation ensures that operations on b and f properties that use
matrix syntax continue to work without errors in a future version.

When you use cell arrays, you must also update your code to use cell array syntax on b
and f properties instead of matrix syntax.

Note For single-input polynomial models, the b and f properties continue to be double
row vectors.

Functions and Function Elements Being Removed
Function or Function
Element Name

What Happens When
you Use the Function
or Element?

Use This Instead Compatibility
Considerations

Double matrix support
for b and f properties
of multi-input idpoly
models.

Warns Use cell array to specify
the b and f properties
of multi-input
polynomial models.

If your code performs
operations on the b and
f properties, update
the code to be
compatible with a
future release. See
“New Cell Array
Support for B and F
Polynomials of Multi-
Input Polynomial
Models” on page 19-2.

19-3

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/setpolyformat.html

R2009b

Version: 7.3.1

No New Features or Changes

20

R2009a

Version: 7.3

New Features

21

Enhanced Handling of Offsets and Trends in Signals
This version of the product includes new and expanded functionality for handling offsets
and trends in signals. This data processing operation is necessary for estimating more
accurate linear models because linear models cannot capture arbitrary differences
between the input and output signal levels.

The previous version of the product let you remove mean values or linear trends from
steady-state signals using the GUI and the detrend function. For transient signals, you
had to remove offsets and trends using matrix manipulation.

The GUI functionality for removing means and linear trends from signals is unchanged.
However, you can now do the following at the command line:

• Save the values of means or linear trends removed during detrending using a new
detrend output argument. You can use this saved trend information to detrend other
data sets. You can also restore subtracted trends to the output simulated by a linear
model that was estimated from detrended data.

For example, this syntax computes and removes mean values from the data, and saves
these values to the output variable T: [data_d,T]=detrend(data). T is an object
with properties that store offset and slope information for input and output signals.

• Remove any offset or linear trend from the data using a new detrend input argument.
This is useful for removing arbitrary nonzero offsets from transient data or applying
previously saved trend information to any data set.

For example, this syntax removes an offset or trend specified by T: data_d =
detrend(data,T).

• Add an arbitrary offset or linear trend to data signals. This is useful when you want to
simulate the response of a linear model about a nonzero equilibrium input-output level
and this model was estimated from detrended data.

For example, this syntax adds trend information to a simulated model output y_sim,
which is an iddata object: y = retrend(y_sim,T). T specifies the offset and slope
information for inputs and outputs.

For more information, see Handling Offsets and Trends in Data.

R2009a

21-2

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bqu7itj-1.html

Ability to Get Regressor Values in Nonlinear ARX Models
The getreg command can now return the numerical values of regressors in nonlinear
ARX models and provides an intermediate output of nonlinear ARX models.

This advanced functionality converts input and output values to regressors, and passes
the regressor values to the evaluate command to compute the model response. This
incremental step lets you gain insight into the propagation of information through the
nonlinear ARX model.

For more information, see the getreg reference page. To learn more about the nonlinear
ARX model structure, see Nonlinear Black-Box Model Identification.

21-3

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/getreg.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq2iwh8.html

R2008b

Version: 7.2.1

Compatibility Considerations

22

Functions and Properties Being Removed
Function or Property Name What

Happens
When You
Use
Function or
Property?

Use This Instead Compatibility
Considerations

model.Algorithm.
Trace

Still runs model.Algorithm.
Display

Using

model.Algorithm
.
Trace
results in a
warning.

R2008b

22-2

R2008a

Version: 7.2

New Features

Compatibility Considerations

23

Simulating Nonlinear Black-Box Models in Simulink Software
You can now simulate nonlinear ARX and Hammerstein-Wiener models in Simulink using
the nonlinear ARX and the Hammerstein-Wiener model blocks in the System Identification
Toolbox block library. This is useful in the following situations:

• Representing dynamics of a physical component in a Simulink model using a data-
based nonlinear model

• Replacing a complex Simulink subsystem with a simpler data-based nonlinear model

Note Nonlinear ARX Model and Hammerstein-Wiener Model blocks read variables from
the MATLAB (base) workspace or model workspace. When the MATLAB workspace and
model workspace contain a variable with the same name and this variable is referenced
by a Simulink block, the variable in the model workspace takes precedence.

If you have installed Real-Time Workshop® software, you can generate code from models
containing nonlinear ARX and the Hammerstein-Wiener model blocks. However, you
cannot generate code when:

• Hammerstein-Wiener models use the customnet estimator for input or output
nonlinearity.

• Nonlinear ARX models use custom regressors or use the customnet or neuralnet
nonlinearity estimator.

You can access the new System Identification Toolbox blocks from the Simulink Library
Browser. For more information about these blocks, see the IDNLARX Model (nonlinear
ARX model) and the IDNLHW Model (Hammerstein-Wiener model) block reference pages.

Linearizing Nonlinear Black-Box Models at User-Specified
Operating Points
You can now use the linearize command to linearize nonlinear black-box models,
including nonlinear ARX and Hammerstein-Wiener models, at specified operating points.
Linearization produces a first-order Taylor series approximation of the system about an
operating point. An operating point is defined by the set of constant input and state
values for the model.

R2008a

23-2

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/customnet.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/customnet.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/neuralnet.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlarxmodel.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlhwmodel.html

If you do not know the operating point, you can use the findop command to compute it
from specifications, such as steady-state requirements or values of these quantities at a
given time instant from the simulation of the model.

For nonlinear ARX models, if all of the steady-state input and output values are known,
you can map these values to the model state values using the data2state command.

linearize replaces lintan and removes the restriction for linearizing models
containing custom regressors or specific nonlinearity estimators, such as neuralnet and
treepartition.

If you have installed Simulink Control Design software, you can linearize nonlinear ARX
and Hammerstein-Wiener models in Simulink after importing them into Simulink.

For more information, see:

• Linear Approximation of Nonlinear Black-Box Models about computing operating
points and linearizing models

• Simulating Identified Model Output in Simulink about importing nonlinear black-box
models into Simulink

Estimating Multiple-Output Models Using Weighted Sum of
Least Squares Minimization Criterion
You can now specify a custom weighted trace criterion for minimization when estimating
linear and nonlinear black-box models for multiple-output systems. This feature is useful
for controlling the relative importance of output channels during the estimation process.

The Algorithm property of linear and nonlinear models now provides the Criterion
field for choosing the minimization criterion. This new field can have the following values:

• det — (Default) Specify this option to minimize the determinant of the prediction
error covariance. This choice leads to maximum likelihood estimates of model
parameters. It implicitly uses the inverse of estimated noise variance as the weighting
function. This option was already available in previous releases.

• trace — Specify this option to define your own weighing function that controls the
relative weights of output signals during the estimation. This criterion minimizes the
weighted sum of least square prediction errors. You can specify the relative weighting
of prediction errors for each output using the new Weighting field of the Algorithm
property. By default, Weighting is an identity matrix, which means that all outputs
are weighed equally. Set Weighting to a positive semidefinite symmetric matrix.

23-3

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/brjukrq.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq5gmcf.html

For more information about Algorithm fields for nonlinear estimation, see the idnlarx
and idnlhw reference pages.

Note If you are estimating a single-output model, det and trace values of the
Criterion field produce the same estimation results.

Improved Handling of Initial States for Linear and Nonlinear
Models
The following are new options to handle initial states for nonlinear models:

• For nonlinear ARX models (idnlarx), you can now specify a numerical vector for
initial states when using sim or predict by setting the Init argument. For example:

predict(model,data,'init',[1;2;3;4])

where the last argument is the state vector.

For more information, see the sim and predict reference pages.
• For Hammerstein-Wiener models (idnlhw), you can now choose to estimate the initial

states when using predict or nlhw by setting INIT='e'.

For more information, see the predict and nlhw reference pages.

If you want to specify your own initial states, see the corresponding model reference
pages for a definition of the states for each model type.

If you do not know the states, you can use the findop or the findstates command to
compute the states. For more information about using these commands, see the
findop(idnlarx), findop(idnlhw), findstates(idnlarx), and
findstates(idnlhw) reference pages.

To help you interpret the states of a nonlinear ARX model, you can use the
getDelayInfo command. For more information, see the getDelayInfo reference page.

The findstates command is available for all linear and nonlinear models. Also see the
findstates(idnlgrey) reference page.

R2008a

23-4

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlarx.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlhw.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/sim.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/predict.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/predict.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/nlhw.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/findopidnlarx.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/findopidnlhw.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/findstatesidnlarx.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/findstatesidnlhw.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/getdelayinfo.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/getdelayinfo.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/findstatesidnlgrey.html

Improved Algorithm Options for Linear Models
The following improvements are available for the Algorithm property of linear models to
align linear and nonlinear models (where appropriate) and improve robustness for default
settings:

• The SearchDirection field (model.Algorithm.SearchDirection) has been
renamed to SeachMethod (model.Algorithm.SearchMethod) to be consistent with
the nonlinear models, where the corresponding field is SeachMethod.

• The new lsqnonlin option for specifying SearchMethod is available.
model.Algorithm.SearchMethod='lsqnonlin' uses the lsqnonlin optimizer
from the Optimization Toolbox software. You must have Optimization Toolbox software
installed to use this option.

• The improved gn algorithm (subspace Gauss-Newton method) is available for
specifying SearchDirection. The updated gn algorithm better handles the scale of
the parameter Jacobians and is also consistent with the algorithm used for nonlinear
model estimation.

• The default values for the LimitError field of the Algorithm property
(modelname.Algorithm.LimitError) is changed to 0, which is consistent with the
corresponding option for estimating nonlinear models. In previous releases,
LimitError default value was 1.6, which robustified the estimation process against
data outliers by associating a linear penalty for large errors, rather than a quadratic
penalty. Now, there is no robustification by default (LimitError=0). You can estimate
the model with the default setting and plot the prediction errors using
pe(data.model). If the resulting plot shows occasional large values, repeat the
estimation with model.Algorithm.LimitError set to a value between 1 and 2.

• The model.Algorithm.Advanced property has a new tolerance field GnPinvConst
corresponding to the gn SearchMethod. GnPinvConst specifies that singular values
of the Jacobian that are smaller than GnPinvConst*max(size(J))*norm(J)*eps
are discarded when computing the search direction. You can assign a positive real
value for this field. Default value is 1e4.

• The default value of model.Algorithm.Advanced.Zstability property has been
changed from 1.01 to 1+sqrt(eps). The new default reduces the possibility of a
situation where the estimation algorithm does not converge (predictor becomes
unstable) while still allowing enough flexibility to capture lightly damped modes.

23-5

https://www.mathworks.com/help/releases/R2012a/toolbox/optim/ug/lsqnonlin.html

New Block Reference Pages
New documentation for System Identification Toolbox blocks is provided. For more
information, see Block Reference in the System Identification Toolbox reference
documentation.

Functions and Properties Being Removed
Function or Property Name What

Happens
When You
Use
Function or
Property?

Use This Instead Compatibility
Considerations

lintan Still runs linearize(idnlhw)
linearize(idnlarx)

See “Linearizing
Nonlinear Black-
Box Models at
User-Specified
Operating Points”
on page 23-2.

model.Algorithm.
SearchDirection

Still runs model.Algorithm.
SearchMethod

See “Improved
Algorithm Options
for Linear Models”
on page 23-5.

gns option of
model.Algorithm.
SearchDirection

Still runs gn See “Improved
Algorithm Options
for Linear Models”
on page 23-5.

GnsPinvTol of
model.Algorithm.Advanced

Still runs GnPinvConst See “Improved
Algorithm Options
for Linear Models”
on page 23-5.

R2008a

23-6

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/brjtjvv-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/linearizeidnlhw.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/linearizeidnlarx.html

R2007b

Version: 7.1

New Features

24

New Polynomial Nonlinearity Estimator for Hammerstein-
Wiener Models
You can now estimate nonlinearities for Hammerstein-Wiener models using a single-
variable polynomial at either the input or the output. This nonlinearity estimator is
available at the command line.

For more information, see the poly1d reference pages. For more information about
estimating Hammerstein-Wiener models, see Identifying Hammerstein-Wiener Models in
the System Identification Toolbox documentation.

R2007b

24-2

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/poly1d.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq2ix15.html

R2007a

Version: 7.0

New Features

• “New Nonlinear Black-Box Modeling Options” on page 25-2
• “New Nonlinear Grey-Box Modeling Option” on page 25-2
• “New Getting Started Guide” on page 25-3
• “Revised and Expanded User's Guide” on page 25-3

25

New Nonlinear Black-Box Modeling Options
You can now estimate nonlinear discrete-time black-box models for both single-output and
multiple-output time-domain data. The System Identification Toolbox product supports the
following types of nonlinear black-box models:

• Hammerstein-Wiener
• Nonlinear ARX

To learn how to estimate nonlinear black-box models using the System Identification Tool
GUI or commands in the MATLAB Command Window, see the System Identification
Toolbox documentation.

Note You can estimate Hammerstein-Wiener black-box models from input-output data
only. These models do not support time-series data, where there is no input.

New demos are available to help you explore nonlinear black-box functions. For more
information, see the collection of demos in the Tutorials on Nonlinear ARX and
Hammerstein-Wiener Model Identification category.

New Nonlinear Grey-Box Modeling Option
You can now estimate nonlinear discrete-time and continuous-time models for arbitrary
nonlinear ordinary differential equations using single-output and multiple-output time-
domain data, or time-series data (no measured inputs). Models that you can specify as a
set of nonlinear ordinary differential equations (ODEs) are called grey-box models.

To learn how to estimate nonlinear grey-box models using the commands in the MATLAB
Command Window, see System Identification Toolbox documentation.

Specify the ODE in a function or a MEX-file. The template file for writing the MEX-file,
IDNLGREY_MODEL_TEMPLATE.c, is located in matlab/toolbox/ident/nlident.

To estimate the equation parameters, first construct an idnlgrey object to specify the
ODE file and the parameters you want to estimate. Use pem to estimate the ODE
parameters. For more information, see the idnlgrey and pem reference pages.

R2007a

25-2

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq2iwh8.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq2iwh8.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq2iwh8.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlgrey.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/pem.html

New demos are available to help you explore nonlinear grey-box functions. For more
information, see the collection of demos in the Tutorials on Nonlinear Grey-Box Model
Identification category.

Optimization Toolbox Search Method for Nonlinear Estimation
Is Supported
If you have Optimization Toolbox software installed, you can specify the lsqnonlin
search method for estimating black-box and grey-box nonlinear models in the MATLAB
Command Window.

model.algorithm.searchmethod='lsqnonlin'

For more information, see the idnlarx, idnlhw, and idnlgrey reference pages.

New Getting Started Guide
The System Identification Toolbox product now provides a new Getting Started Guide.
This guide introduces fundamental identification concepts and provides the following
tutorials to help you get started quickly:

• Tutorial – Identifying Linear Models Using the GUI — Tutorial for using the System
Identification Tool graphical user interface (GUI) to estimate linear black-box models
for single-input and single-output (SISO) data.

• Tutorial – Identifying Low-Order Transfer Functions (Process Models) Using the GUI
— Tutorial for using the System Identification Tool graphical user interface (GUI) to
estimate low-order transfer functions to fit single-input and single-output (SISO) data.

• Tutorial – Identifying Linear Models Using the Command Line — Tutorial for
estimating models using System Identification Toolbox objects and methods for
multiple-input and single-output (MISO) data.

Revised and Expanded User's Guide
The System Identification Toolbox documentation has been revised and expanded.

25-3

https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlarx.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlhw.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlgrey.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/gs/gs_intropage.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/gs/bqs6ip8.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/gs/bqs6iw1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/gs/bqs6i4h.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/ug_intropage.html

R2006b

Version: 6.2

New Features

26

MATLAB Compiler Support
The System Identification Toolbox product now supports the MATLAB Compiler product.

You can use MATLAB Compiler to take MATLAB files as input and generate
redistributable, standalone applications that include System Identification Toolbox
functionality, including the following:

• Creating data and model objects
• Preprocessing and manipulating data
• Simulating models
• Transforming models, including conversions between continuous and discrete time

and model reduction
• Plotting transient and frequency response

To use these features, write a function that uses System Identification Toolbox commands.
Use the MATLAB Compiler software to create a standalone application from the MATLAB
Compiler file. For more information, see the MATLAB Compiler documentation.

Standalone applications that include System Identification Toolbox functionality have the
following limitations:

• No access to the System Identification library in the Simulink software (slident)
• No support for model estimation

R2006b

26-2

R2006a

Version: 6.1.3

New Features

Compatibility Considerations

• “balred Introduced for Model Reduction” on page 27-2
• “Search Direction for Minimizing Criteria Can Be Computed by Adaptive Gauss-

Newton Method” on page 27-2
• “Maximum Number of Bisections Used by Line Search Is Increased” on page 27-2

27

balred Introduced for Model Reduction
Use balred to perform model reduction instead of idmodred.

Search Direction for Minimizing Criteria Can Be Computed by
Adaptive Gauss-Newton Method
An adaptive Gauss-Newton method is now available for computing the direction of the
line search for cost-function minimization. Use this method when you observe
convergence problems in the estimation results, or as an alternative to the Levenberg-
Marquard (lm) method.

The gna search method was suggested by Adrian Wills, Brett Ninness, and Stuart Gibson
in their paper "On Gradient-Based Search for Multivariable System Estimates", presented
at the IFAC World Congress in Prague in 2005. gna is an adaptive version of gns and uses
a cutoff value for the singular values of the criterion Hessian, which is adjusted adaptively
depending on the success of the line search.

Specify the gna method by setting the SearchDirection property to 'gna'. For
example:

m = pem(data,model_structure,'se','gna')

The default initial value of gamma in the gna search is 10^-4. You can set a different
value using the InitGnaTol property.

Maximum Number of Bisections Used by Line Search Is
Increased
The default value for the MaxBisections property, which is the maximum number of
bisections along the search direction used by line search, is increased from 10 to 25. This
increases the number of attempts to find a lower criterion value along the search vector.

R2006a

27-2

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/balred.html

Functions and Properties Being Removed
Function or Property Name What

Happens
When You
Use
Function or
Property?

Use This Instead Compatibility
Considerations

idmodred Still runs balred See “balred
Introduced for
Model Reduction”
on page 27-2.

27-3

https://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/balred.html

R14SP3

Version: 6.1.2

No New Features or Changes

28

R14SP2

Version: 6.1.1

No New Features or Changes

29

